
BUFFER SIZING IN INTERNET ROUTERS

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Yashar Ganjali Gavgani

March 2007

c© Copyright by Yashar Ganjali Gavgani 2007

All Rights Reserved

ii

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Nick McKeown
(Principal Adviser)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Ashish Goel
Department of Management Science and Engineering

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Tim Roughgarden
Department of Computer Science

Approved for the University Committee on Graduate

Studies.

iii

Abstract

Internet routers require buffers to hold packets during times of congestion. The buffers

need to be fast, and so ideally they should be small enough to use fast memory

technologies such as SRAM or all-optical buffering. Unfortunately, a widely used

rule-of-thumb says we need a bandwidth-delay product of buffering at each router so

as not to lose link utilization. This can be prohibitively large.

In a recent paper, Appenzeller et al. challenged this rule-of-thumb and showed

that for a backbone network the buffer size can be divided by
√

N without sacrificing

throughput, where N is the number of flows sharing the bottleneck. In this disserta-

tion, we explore how buffers in the backbone can be significantly reduced even more,

to as little as a few dozen packets, if we are willing to sacrifice a small amount of link

capacity. We argue that if the TCP sources are not overly bursty, then 20-50 packet

buffers are sufficient for high throughput. Specifically, we argue that O(log W) buffers

are sufficient, where W is the congestion window size of each flow. We support our

claim with analysis, a variety of simulations, and some experiments in real networks.

The change we need to make to TCP is minimal – each sender just needs to pace

packet injections from its window. Moreover, there is some evidence that such small

buffers are sufficient even if we do not modify the TCP sources so long as the access

network is much slower than the backbone, which is true today and likely to remain

true in the future.

We conclude that buffers can be made small enough for all-optical routers with

small integrated optical buffers.

iv

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my adviser, Prof.

Nick McKeown. He has been a great source of wisdom, support, and inspiration. He

taught me how to “think big”, “be persistent”, and “be patient” at the same time. I

cannot thank him adequately.

It is a great pleasure to acknowledge the work of the readers of this thesis, Prof.

Nick McKeown, Prof. Ashish Goel, and Prof. Tim Roughgarden. This work has

benefited from their thoughtful comments and suggestions. I would also like to thank

Nandita Dukkipati, Salem Derisavi, Afshar Ganjali, and Hamideh Emrani for reading

the manuscripts of this work, and for their valuable comments.

Professor David Dill, along with Nick, supported me during my first year at Stan-

ford; I am very thankful.

Parts of this work were done in collaboration with others. I would like to acknowl-

edge Neda Beheshti, Daniel Blumenthal, Mihaela Enachescu, Ashish Goel, Ramesh

Rajaduray, Tim Roughgarden, Mei Wang. I enjoyed working with them, and learned

a lot from each of them.

At the time of submission of this dissertation, I resided outside United States.

Vahbod Pourahmad, Mohsen Bayati, and Neda Beheshti helped greatly with the

submission process.

Parallel to my academic life, I have had a wonderful time at Stanford mainly

because of all the good friends that I have had. They have been my big family during

the time I was not able to visit home and see my family and friends.

A major part of this project has been conducted in collaboration with various

research laboratories. Jean Bolot, Ed Kress, Kosol Jintaseranee, James Schneider,

v

and Tao Ye from Sprint ATL, Stanislav Shalunov, from Internet2, Shane Amante,

Kevin Epperson, Niclas Comstedt, and Darren Loher from Level 3 Communications,

Jeff Blanchard, Chris Chapman, Robert Gadbois, Max Kellogg, John Kenney, Deva

Pandian, and Thuy Pham from Spirent Communications, T.V. Lakshman, Marina

Thottan from Lucent Technologies, Pat Kush, and Tom Wilkes from Verizon commu-

nications, all helped during different stages of experiments. I am sincerely thankful

to all of them.

I am specially thankful to the past and current members of High Performance

Networking Group: Guido Appenzeller, Neda Beheshti, Martin Casado, Shang-Tse

Chuang, Nandita Dukkipati, Sundar Iyer, Isaac Keslassy, Pablo Molinero, Jad Naus,

Paul Tarjan, Rui Zhang-Shen. These are a group of the smartest people I have known

in my life, and very good friends as well. I am specially thankful to Guido for his

help during the initial phase of this project.

The members of Information Systems Networking Laboratory provided extremely

helpful feedback throughout this work. I would like to acknowledge Prof. Balaji Prab-

hakar, Abtin Keshavarzian, Devavrat Shah and Mei Wang for their valued comments

and discussions.

Last but absolutely not least, I wish to express how grateful I am to my wonderful

family: my parents, and my brother, whose continuous love, caring, and support

made me who I am. We were physically distant during the past few years, but I

know they have kept me in their prayers. My lovely wife Hamideh has been the most

wonderful companion I could have wished for during this journey. She has been the

greatest source of love and support. This dissertation is dedicated to her.

vi

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Motivation . 1

1.1.1 Why does router buffer sizing matter? 1

1.1.2 Why is the router buffer sizing problem difficult? 3

1.2 Rule-of-thumb for Buffer Sizing . 4

1.3 Related Work . 5

1.4 Organization of the Dissertation . 7

2 Overview: Rule-of-thumb and Small Buffers 8

2.1 Single Flow Scenario – Rule-of-thumb 9

2.1.1 Overview of TCP Behavior . 9

2.1.2 Origin of the Rule-of-thumb 11

2.1.3 Verification of the Rule-of-thumb 13

2.2 Small Buffers Rule . 16

2.2.1 Synchronized Flows . 17

2.2.2 Desynchronized Flows . 18

2.3 Summary . 20

3 Tiny Buffer Sizing Rule 21

3.1 Implications of Tiny Buffers . 21

vii

3.2 Tiny Buffers Intuition . 22

3.3 Poisson Injections, Over-provisioned Network 26

3.4 Paced TCP, Over-provisioned Network 27

3.5 Paced TCP, Under-provisioned Network 33

3.6 The Necessity of Logarithmic Scaling of Buffer Sizes 36

3.7 Summary . 39

4 Buffer Sizing Experiments 41

4.1 Small Buffers Experiments . 43

4.1.1 Experiment Setup and Characteristics 43

4.1.2 Experiment Results . 45

4.1.3 Other Small Buffer Experiments 50

4.2 Tiny Buffers Experiments . 51

4.2.1 Traffic Generator Evaluation 53

4.2.2 Experiment Results . 54

4.2.3 Hidden Buffers . 65

4.2.4 Other Tiny Buffer Experiments 65

4.3 Summary . 66

5 Tiny Buffers in Practice 67

5.1 Combined Input-Output Queued Switching 68

5.1.1 Theoretical Bounds . 69

5.1.2 Simulation Results . 70

5.2 All-optical FIFO Queue Using Delay Lines 74

5.2.1 Preliminaries and Assumptions 76

5.2.2 Emulating FIFO with O(log N) Switches 77

5.2.3 Construction of the Waiting Line W 82

5.3 Summary . 85

6 Conclusion 86

A Proof of the Tiny Buffers Main Theorem 88

viii

B Pacing Analysis 94

C All-optical Buffering 98

Bibliography 100

ix

List of Tables

4.1 Throughput (Mb/s) as a function of advertised congestion window size

and number of flows. 60

4.2 Drop rate vs. file size . 62

x

List of Figures

1.1 End-to-end latency of any packet consists of three components: trans-

mission delay, propagation delay, and queueing delay. Here, the end-

to-end latency is
∑

i TRANSi + PROPi + Qi. 2

1.2 Rule-of-thumb for buffer sizing: B = 2T × C. 4

2.1 Congestion control in the Internet. To avoid overwhelming the network

and causing congestion, the source needs to control packet injection

rate. In this figure, packets originating at source pass through routers

R1, R2, R4, and R7 before reaching the destination. Packet injection

rate must be such that none of the links on the path become congested. 10

2.2 Single TCP flow going through a bottleneck link. 11

2.3 Congestion window size, queue occupancy, and link utilization for a

single-flow network with buffer size equal to the bandwidth-delay prod-

uct (100 packets). 14

2.4 Performance of a network with buffers less than the bandwidth delay

product (71 packets). 15

2.5 Performance of a network with buffers more than the bandwidth delay

product (128 packets). 16

2.6 When the flows are perfectly synchronized (the dashed curve on the

bottom), their aggregate (the solid curve on top) will have a similar

shape to the saw-tooth shape of a single TCP flow. 17

2.7 When the flows are not synchronized (the dashed curve on the bottom),

their aggregate (the solid curve on top) will become smoother as the

number of flows grows. 19

xi

3.1 Bottleneck link utilization for different buffer sizes (TCP Reno vs.

Paced TCP) . 28

3.2 Bottleneck link utilization for different buffer sizes and number of flows.

(a) TCP reno (b) TCP Reno with logarithmic x-axis (c) paced TCP

(d) Paced TCP with logarithmic x-axis. The maximum possible offered

load is 0.026 with one flow, 0.26 with 10 flows, 0.52 with 20 flows, and

1 with 40 flows. 30

3.3 Congestion window size (TCP Reno vs. Paced TCP) 31

3.4 Throughput of Paced TCP vs. TCP Reno; the capacity of shared link

is increased as we increase the number of flows. 33

3.5 Bottleneck link utilization vs. the buffer size. With only 40 flows the

core link becomes saturated, but even if we increase the number up to

200 flows, the throughput does not go below 80%. 34

3.6 Throughput as a function of number of flows for various values of the

offered load to the system. 36

3.7 Throughput as a function of access link capacity. 37

3.8 Constant vs. logarithmic buffers. 38

4.1 Setup used for buffer sizing experiments in Level 3 Communications’

backbone network. The incoming traffic to Router A was divided

amongst the three links connecting Router A to Router B using a

static hash function balancing flows over the three links. 44

4.2 Packet drop rate as a function of load for buffer sizes equal to 190ms,

10ms, and 5ms. We did not observe any packet drops in these experi-

ments. 45

4.3 Packet drop rate as a function of load for buffer size of 2.5ms. We saw

packet drops in only a handful of cases. 46

4.4 Packet drop rate as a function of load for a buffer size of 1ms. We

observed packet drops during high utilization time periods. 47

4.5 Relative utilization of two links with 1ms and 190ms of buffering over

time. 48

xii

4.6 Utilization of links with 1ms and 190ms of buffering. 49

4.7 Utilization of 1ms buffer link vs. the utilization of the 190ms buffer link. 50

4.8 Topology of the network used in experiments. The capacity of core

links is 1Gb/s, and the capacity of access links is 15Mb/s. 51

4.9 Tiny buffer experiment setup. 52

4.10 Throughput vs. time for various buffer sizes. 54

4.11 Average throughput vs. buffer size. 55

4.12 Delay statistics vs. the buffer size. The red square represents the

average delay and the bar represents the standard deviation. 56

4.13 Drop rate vs. buffer size. 57

4.14 Throughput vs. potential load for different buffer sizes. 59

4.15 Throughput vs. the number of flows. 61

4.16 Throughput vs. access link capacity. 63

4.17 Throughput vs. delay pattern. 64

5.1 Topology of the switch used in ns-2 simulations. 71

5.2 Throughput of a CIOQ switch as a function of buffer size. 72

5.3 Throughput of a CIOQ switch as a function of access link capacity. . 73

5.4 Building all-optical buffers from optical delay lines. 75

5.5 General architecture for building all-optical buffers from optical delay

lines and switches. 76

5.6 Emulating a FIFO queue using delay lines. The system regulates the

position of the arrived packets by passing them through a waiting line. 78

5.7 Trade-off between the number of delay lines and the maximum delay

line length. 84

A.1 Simplified topology of the network used in analysis. 89

A.2 Dynamics of the congestion window. 91

xiii

Chapter 1

Introduction

1.1 Motivation

Packet switching is an efficient way of sharing the cost of long-haul links in data

networks. By statistically multiplexing different flows, we can significantly reduce

the overall cost of the network, and make it more resilient to failures. In any packet

switched network, such as the Internet, we need to have “some” amount of buffering

in the routers to hold packets during times of congestion. The question is how much

buffering Internet routers need in order to have an acceptable performance. We call

this the buffer sizing problem, and will study it in this dissertation.

1.1.1 Why does router buffer sizing matter?

In a packet switched network, end-to-end latency of individual packets is an important

performance metric, which quantifies the behavior of the system from a user’s point of

view. If we take a closer look at the end-to-end latency of a given packet (Figure 1.1),

we can see that it consists of three main components.

1. Transmission delay. This is the time it takes for a packet to be transmitted

by the source host, and by any intermediate router on its path.

2. Propagation delay. This is the time it takes for a packet to traverse the links

connecting routers; and

1

CHAPTER 1. INTRODUCTION 2

Host A

Host B

R1

R2

R3

TRANS1

TRANS2

TRANS3

TRANS4

PROP1

PROP2

PROP3

PROP4

Q2

Figure 1.1: End-to-end latency of any packet consists of three components: trans-
mission delay, propagation delay, and queueing delay. Here, the end-to-end latency
is

∑
i TRANSi + PROPi + Qi.

3. Queueing delay. This is the time that the packet sits in a buffer and waits for

some system resource – usually the output port of the router which is blocked

by other packets – to be released.

Of these three components, the first two (i.e. the transmission delay and the

propagation delay) are fixed. Queueing delay is the only variable component of the

end-to-end latency, and therefore it is what causes the variation in performance ob-

served by the end users. In fact, one can argue that queueing delay is the single

biggest cause of uncertainty in today’s Internet. Clearly, queueing delay and jit-

ter1 are directly related to the buffer sizes. We need to understand the buffer sizing

problem if we want to understand and control the queueing delay of packets.

Additionally, there are other reasons why buffer sizing is important; a considerable

reduction in router buffer sizes, if it were possible, would have significant practical

consequences.

First, if big electronic routers only needed very small buffers, it could reduce their

complexity, making them easier to build and easier to scale. A typical 10 Gb/s router

linecard today contains about one million packet buffers, using many external DRAM

chips. The board space the DRAMs occupy, the pins they require, and the power

1Variations in queueing delay of different packets is called jitter.

CHAPTER 1. INTRODUCTION 3

they dissipate all limit the capacity of the router [7]. If very small buffers suffice,

then packet buffers could be incorporated inside the network processor (or ASIC) in

a small on-chip SRAM; in fact, the buffers would only occupy a tiny portion of the

chip. Not only would external memories be removed, but the reduction in buffer sizes

would allow the use of fast on-chip SRAM, which scales in speed much faster than

DRAM. By eliminating some board space, and reducing the complexity of the router,

we can increase the density of the system, and simply provide higher throughput.

Second, reduced buffer sizes could facilitate the building of all-optical routers.

With recent advances in optical technology [33, 34, 40], it is now possible to perform

all-optical switching, opening the door to routers with huge capacity and lower power

than electronic routers. These advances make possible optical FCFS2 packet buffers

that can hold a few dozen packets in an integrated opto-electronic chip [40]. Larger

all-optical buffers remain infeasible, except with unwieldy spools of optical fiber (that

can only implement delay lines, not true FCFS packet buffers). Feasibility of having

a network with a few dozen packets, which might result from studying the buffer

sizing requirements, is an important step towards building an operational all-optical

network.

1.1.2 Why is the router buffer sizing problem difficult?

Given the importance of the buffer sizing problem, one might reasonably think that it

is already well understood. After all, we are equipped with tools like queueing theory,

large deviations theory, and mean fields theory, which are focused on solving exactly

this type of problem. One might think this is simply a matter of understanding the

random process that describes the queue occupancy over time. Unfortunately, this is

not the case.

The closed-loop nature of the flows in the Internet, i.e., the fact that flows react

to the current state of the network, makes it necessary to use control theoretic tools,

rather than queueing theory techniques. However, we cannot simply apply control

theoretic tools for this problem as they mainly emphasize the equilibrium state of the

2First-come, first-serve.

CHAPTER 1. INTRODUCTION 4

C
RouterSource Destination

2T

Figure 1.2: Rule-of-thumb for buffer sizing: B = 2T × C.

system, rather than what we are interested here, i.e., the transient state. Additionally,

the discrete nature of the buffer sizing problem makes using classic control theoretic

tools difficult, as they are typically designed for continuous systems.

It is also difficult to experimentally study the buffer sizing problem by reducing

the buffers in a commercial backbone router. The problem is, how to decide the

appropriate buffer size, without trying it in an operational network? But who would

reduce buffers in an operational network, and risk losing customers’ traffic, before

knowing if the result is correct?

1.2 Rule-of-thumb for Buffer Sizing

If the buffer sizing problem is not easy, what do people do in practice? Buffer sizes

in today’s Internet routers are set based on a rule-of-thumb which says, if we want

the core routers to have 100% utilization, the buffer size should be greater than or

equal to 2T ×C, also known as the bandwidth-delay product. Here, 2T is the effective

round-trip propagation delay of a flow through the router (also denoted as RTT),

and C is the capacity of the bottleneck link (Figure 1.2).

This bandwidth-delay rule is mandated in backbone and edge routers, and appears

in several Internet RFCs [11], and architectural guidelines. Based on the rule-of-

thumb, the buffer size increases linearly with capacity of the bottleneck link. Due

to the limitations on the speed of light, we do not expect the propagation delay to

change drastically over time, but capacity of the network is expected to grow very

rapidly. Therefore, this rule can have major consequences in router design.

CHAPTER 1. INTRODUCTION 5

1.3 Related Work

There is evidence that shows the rule-of-thumb was known at the time TCP was

invented [31, 30]. In the literature, however, this rule is commonly attributed to a

paper by Villamizar and Song [48]. Based on experimental measurements of up to

eight long-lived TCP flows on a 40 Mb/s link and with different buffer sizes, they

concluded that any router needs a buffer size equal to the capacity of the router’s

network interface, multiplied by the round-trip time of a typical flow passing through

the router, or the bandwidth-delay product.

Using ns-2 [4] simulations, Morris [36] investigated the buffer sizing problem on

a 10 Mb/s link with 25ms latency and carrying up to 1500 long-lived flows. He

concluded that the required buffer size is a small multiple of the number of flows.

The bandwidth-delay product of this network is approximately 217 packets, which

means most of the flows have only a fraction of a packet in transit at any time. Thus,

most flows are in timeout, which significantly reduces link utilization and fairness in

the system. We note that it is not typical for a router used by a carrier or ISP to be

under such a high load, and therefore, this result is related to access networks and

has very limited implications for today’s core Internet routers.

Appenzeller et al. proposed the rule B = 2T × C/
√

N instead, where N is

the number of flows through the bottleneck link [7]. In a backbone network today,

N is often in the thousands or the tens of thousands, and so the sizing rule B =

2T × C/
√

N results in significantly smaller buffers. The basic idea follows from the

observation that the buffer size is, in part, determined by the saw-tooth window

size process of TCP flows. The bigger the saw-tooth, the bigger the buffers need

to be so as to guarantee 100% throughput. As the number of flows increases, the

aggregate window size process (the sum of all the congestion window size processes

for each flow) decreases, following the Central Limit Theorem. The result relies on

several assumptions: (1) That flows are sufficiently independent of each other to

be desynchronized, (2) That the buffer size is dominated by long-lived flows, and

perhaps most importantly (3) That there are no other significant, unmodeled reasons

for buffering more packets. We call this the small buffers rule, and will scrutinize it

CHAPTER 1. INTRODUCTION 6

more carefully later.

Dhamdhere and Dovrolis [17] studied a particular network example to argue that

when packet drop rates are considered, one might need much larger buffers – perhaps

larger than the buffers in place today. Similar to Morris’s work [36] they studied

an example where a large number of flows share a heavily congested low capacity

bottleneck link towards the edge of the network, and showed that one might get

substantial packet drop rates, even if buffers are set based on the rule-of-thumb.

Recently, we (in collaboration with others) proposed reducing buffers much further

to O(1) ≈ 20− 50 packets in backbone routers [19]. The main idea is considering the

tradeoff between reducing buffers and losing some throughput – assumed to be 10-

20%. In other words, when congested, links behave as if they run at 80-90% of their

nominal rates. This could be an interesting assumption in networks with abundant

link capacity, or in future optical networks where link capacity might be cheaper

than buffers. The results depend on the network traffic being non-bursty, which can

happen in two ways: (1) If the core links run much faster than the access links (which

they do today), then the packets from a source are spread out and bursts are broken,

or (2) TCP sources are changed so as to pace the delivery of packets. If the results

are correct, and relevant, then a backbone link could reduce its buffers by five orders

of magnitude. We call this the tiny buffers rule, and, as the main contribution of this

dissertation, we will explain it in more detail in the following chapters.

The tiny buffers rule was also studied by Raina and Wischik independently [42].

They studied stability of a system under different buffer sizing rules, using control

theory, and simulations, and concluded that a network with tiny buffers is stable.

To get some feel for different buffer sizing rules, consider the scenario where 1000

flows share a link of capacity 10Gb/s. Assume that each flow has a round-trip prop-

agation delay of 100ms, a maximum window size of 64KB, and a packet size of 1KB.

The peak rate is roughly 5Gb/s. The bandwidth-delay product rule-of-thumb sug-

gests a buffer size of 125MB, or around 125,000 packets. The 2T×C/
√

N rule suggests

a buffer size of around 3950 packets, and based on the tiny buffers rule, we will only

need a buffer size of twelve packets plus some small additive constant.

CHAPTER 1. INTRODUCTION 7

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we will

describe the model used throughout the work, and give an overview of the theory

behind the rule-of-thumb. In Chapter 3, we will present a theoretical analysis which

shows the feasibility of having a network with a few dozen packets of buffering. We

will also present simulations on the impact of buffer size reduction on network perfor-

mance. In addition to verifying the limits of our theoretical work, we study the effect

of other network parameters on buffer sizing requirements. Chapter 4 describes the

set of buffer sizing experiments we have done in real networks or test-beds with real

routers. In Chapter 5, we take a closer look at implicit/explicit assumptions in the

tiny buffers rule that might cause problems when building a real system, and address

these miscellaneous issues. Chapter 6 concludes this work.

Chapter 2

Overview: Rule-of-thumb and

Small Buffers

In this chapter, we briefly overview the origins of the rule-of-thumb, and small buffers

rule. We start by examining an extremely simple scenario (Section 2.1): an Internet

core router carrying a single TCP flow. We assume the router is directly connected

to the source and destination nodes of the TCP flow, and that the output link of the

router is the bottleneck. The goal is to keep the bottleneck link at 100% utilization

at all times. This simple scenario is the origin of the rule-of-thumb for buffer sizing.

In Section 2.2, we briefly review the case with more than one flow going through

the router. This is the small buffers scenario studied by Appenzeller et al. [7]. We

show that depending on whether flows are synchronized or not, we will have com-

pletely different requirements for buffer sizing. When flows are independent and

desynchronized, the buffer sizes can be reduced by a factor of
√

N without any degra-

dation in link utilization, where N is the total number of long-lived TCP flows going

through the router.

In Chapter 3, we will explore the tiny buffers rule – i.e., how buffers in the Internet

backbone can be significantly reduced to as little as a few dozen packets.

8

CHAPTER 2. OVERVIEW: RULE-OF-THUMB AND SMALL BUFFERS 9

2.1 Single Flow Scenario – Rule-of-thumb

Today, Internet core routers carry thousands to tens of thousands of flows at any

given time. However, the rule-of-thumb for buffer sizing comes from a setting with

a single TCP flow. This discrepancy can be attributed to the shifting nature of the

network traffic. In the early days of the Internet, it was quite typical for a long-haul

link to carry a small number of flows at any time; this is the single flow origin of the

rule-of-thumb. Even though the single flow assumption is not valid anymore, it is

still useful to understand this assumption and its implications.

In this section, we first give a brief overview of how TCP works (Section 2.1.1),

and why in a single flow setting we need a bandwidth-delay product of buffering based

on the rule-of-thumb (Section 2.1.2).

2.1.1 Overview of TCP Behavior

Understanding how TCP works is essential for understanding the buffer sizing rules.

Here, we will present a very simplified description of TCP Reno basic rules, enough

for us to understand buffer sizing rules. We refer the interested reader to networking

textbooks for a more comprehensive presentation [47, 10].

Let us consider a source node which is going to send some packets to a given

destination node through a network (e.g., the Internet). The source node needs to

control its packet injection rate to the network (Figure 2.1); otherwise, if all nodes keep

sending packets with their maximum capacity, the network might become extremely

congested, and everyone’s performance will suffer.

TCP is a congestion control scheme, designed to address exactly this problem.

Each time the source node sends a packet to the destination, TCP stores the packet

in a memory location, called the congestion window. The packet remains in the con-

gestion window, until the source makes sure it has been received by the destination

node. When the destination node receives the packet, it generates an acknowledge-

ment packet and sends it back to the source. Upon receiving the acknowledgement

packet, the source removes the corresponding packet from the congestion window.

The size of the congestion window, denoted by W , determines the packet injection

CHAPTER 2. OVERVIEW: RULE-OF-THUMB AND SMALL BUFFERS 10

DestinationSource

R1

R2

R3

R4

R6

R5

R7

Figure 2.1: Congestion control in the Internet. To avoid overwhelming the network
and causing congestion, the source needs to control packet injection rate. In this
figure, packets originating at source pass through routers R1, R2, R4, and R7 before
reaching the destination. Packet injection rate must be such that none of the links
on the path become congested.

rate: it is effectively the number of packets which are sent out by the source during

each round-trip time (RTT). We note that it takes one RTT from the time a packet

is sent out by the source till the acknowledgement is received back.

How does TCP adjust W to make sure that the maximum capacity of the network

is utilized, without the network being congested? The answer to this question depends

on the state of the source node, which is either slow-start, or congestion avoidance.

Initially, the source is in slow-start and W is set to two packets. The source increments

W for each acknowledgement it receives – effectively doubling W every RTT.

If the source detects a packet loss, it halves its congestion window and enters

congestion avoidance. In congestion avoidance, W is increased by 1/W each time

an acknowledgement is received – effectively increasing W by one during each RTT.

During congestion avoidance, any packet loss halves the congestion window, and the

flow stays in the same state.

CHAPTER 2. OVERVIEW: RULE-OF-THUMB AND SMALL BUFFERS 11

DestinationSource

Figure 2.2: Single TCP flow going through a bottleneck link.

Slow-Start:

{
No loss: Wnew = 2Wold

Loss: Wnew = Wold

2
; enter congestion avoidance

Congestion Avoidance:

{
No loss: Wnew = Wold + 1

Loss: Wnew = Wold

2

If the source does not receive acknowledgements for several packets in time, it

triggers a timeout, and goes back to the slow-start state and the initial congestion

window size.

2.1.2 Origin of the Rule-of-thumb

Let us consider a TCP flow, between a pair of source-destination nodes, as shown in

Figure 2.2. We use the following notation in this section.

W The congestion window size of the source

2T The Round-Trip-Time as measured by the source

C The capacity of the bottleneck link (between router and destination)

C ′ The capacity of the access link (between source and router)

R The sending rate of the sender

Q The length of the buffer queue (forward path)

B The buffer size. Qmax ≤ B

While in congestion avoidance, the source node will increment W once every

CHAPTER 2. OVERVIEW: RULE-OF-THUMB AND SMALL BUFFERS 12

RTT. As long as the sending rate is less than the capacity of the bottleneck link, i.e.,

R < C, all the buffers on the forward and reverse path remain empty. We note that

the bottleneck link utilization is below 100% in this case and we have W < 2T × C.

Any increase in W will increment the number of packets which are traversing the

forward or reverse path, or on-the-fly packets, without the need to buffer any packets.

Once W reaches 2T ×C (or equivalently when R = C) all the links are full, 1 and

the bottleneck link utilization will reach 100%. From this point on, packets will start

to accumulate at the forward path buffer, and we have

W = 2T × C + Q.

This process will continue until the forward path buffer is full. At this time we

have

W = 2T × C + B.

The next increment in W will cause a packet drop since the forward path buffer

is already full. When the source detects a loss, it halves W . Thus,

W = T × C + B/2.

At this time, the number of packets which are either on-the-fly or in the forward

path buffer is still 2T × C + B, which means the source has to stop sending packets

out until it receives enough acknowledgements. If we want to keep the bottleneck

link at 100% utilization at all times, we need to make the buffer size large enough to

keep the bottleneck link busy from the time the source stops sending packets, until

it starts again. Equivalently, the new congestion window size after the loss event,

i.e., T ×C + B/2, must be large enough so that the source will start sending packets

before the number of on-the-fly packets goes below 2T × C (or R < C). In other

words, we should have

1The bottleneck link throttles the traffic, and therefore the capacity of bottleneck link C is what
determines the total number of on-the-fly packets, even though other links have capacity C ′ > C.

CHAPTER 2. OVERVIEW: RULE-OF-THUMB AND SMALL BUFFERS 13

T × C +
B

2
≥ 2T × C,

or

B ≥ 2T × C, (2.1)

which is exactly the well-known rule-of-thumb for buffer sizing.

2.1.3 Verification of the Rule-of-thumb

Verifying the rule-of-thumb in its original setting is quite simple. We can easily setup

a network with two nodes, and a router connecting them, or use simulations. Here,

we present ns-2 simulation results showing a single-flow network, with a bandwidth-

delay product of 100 packets. Figure 2.3 depicts the congestion window size, queue

occupancy, and bottleneck link utilization when the rule-of-thumb for buffer sizing is

applied.

As we can see in this figure, after the initial slow-start phase, the congestion

window size follows the classic saw-tooth shape. Once the congestion window size

passes 100 packets (or the bandwidth-delay product), the forward and reverse paths

are full. Therefore, packets start to accumulate in the buffer. When the source

congestion window size reaches its maximum of 200 packets, there are about 100

packets on-the-fly, and 100 packets in the buffer. Halving the congestion window

size reduces it to 100 packets, and therefore the source waits until the number of

unacknowledged packets is 100 before starting to send more packets out. This is

exactly when the buffer becomes empty, and thus the bottleneck link never goes idle.

Figure 2.4 represents a scenario where the buffer size (71 packets) is less than the

bandwidth-delay product. Similar to Figure 2.3, the congestion window size follows

the saw-tooth shape. The difference is that, here, the saw-tooth oscillates between 85

and 170 packets, and it has a higher frequency.2 When the congestion window size

equals 170 packets, the links and the buffers are all full, and the next incoming packet

2Since the buffer is smaller, it takes less time for it to fill up or drain.

CHAPTER 2. OVERVIEW: RULE-OF-THUMB AND SMALL BUFFERS 14

0

50

100

150

200

250

300

0 20 40 60 80 100

Time

C
on

ge
st

io
n

W
in

do
w

 (
Pk

ts
)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Time

Q
ue

ue
 O

cc
up

an
cy

 (
P

kt
s)

0

20

40

60

80

100

0 20 40 60 80 100

Time

U
til

iz
at

io
n

(%
)

Figure 2.3: Congestion window size, queue occupancy, and link utilization for a single-
flow network with buffer size equal to the bandwidth-delay product (100 packets).

will be dropped. The source will reduce its congestion window size to 85 packets, and

will wait until the number of unacknowledged packets reaches this limit. Since the

forward and reverse paths can hold up to 100 packets, in addition to the packets in

the buffer being drained, 15 of the packets on-the-fly will leave the system as well;

dropping the bottleneck link utilization below 100%. When the number of on-the-fly

packets reaches 85, the source starts sending again, and fills up the pipes, pushing

the bottleneck link utilization back to 100%.

Figure 2.5 depicts an over-buffered scenario. The saw-tooth shaped congestion

window size oscillates between 114 and 228 packets in this case. Even when at its

CHAPTER 2. OVERVIEW: RULE-OF-THUMB AND SMALL BUFFERS 15

0

50

100

150

200

250

300

0 20 40 60 80 100

Time

C
on

ge
st

io
n

W
in

do
w

 (
Pk

ts
)

0

20

40

60

80

0 10 20 30 40 50 60 70 80 90 100

Time

Q
ue

ue
 O

cc
up

an
cy

 (
P

kt
s)

0

20

40

60

80

100

0 20 40 60 80 100

Time

U
til

iz
at

io
n

(%
)

Figure 2.4: Performance of a network with buffers less than the bandwidth delay
product (71 packets).

minimum, the congestion window size is larger than what is needed to keep the pipes

full. In other words, when the congestion window size is halved, the buffer drains

for a while, but before it becomes empty, the source starts sending out more packets.

Consequently, the bottleneck link utilization remains at 100% at all times. We note

that as a result of this over-buffering, every packet in the system encounters a larger

delay than necessary. For instance, if the buffer size is set to 4T × C, or twice the

rule-of-thumb, each packet will encounter a delay of 4T , which is double the delay

observed normally with a buffer of size 2T × C.

CHAPTER 2. OVERVIEW: RULE-OF-THUMB AND SMALL BUFFERS 16

0

50

100

150

200

250

300

0 20 40 60 80 100

Time

C
on

ge
st

io
n

W
in

do
w

 (
Pk

ts
)

0
20
40
60
80

100
120
140

0 10 20 30 40 50 60 70 80 90 100

Time

Q
ue

ue
 O

cc
up

an
cy

 (
P

kt
s)

0

20

40

60

80

100

0 20 40 60 80 100

Time

U
til

iz
at

io
n

(%
)

Figure 2.5: Performance of a network with buffers more than the bandwidth delay
product (128 packets).

2.2 Small Buffers Rule

While the single-flow setting for the rule-of-thumb might have been appropriate in

the early days of the Internet, it is not common for an Internet backbone router to

carry a single-flow today. A 2.5 Gb/s (OC48c) link for example, typically carries over

10,000 flows at a time [24]. How does the change in number of flows assumption affect

the rule-of-thumb?

Appenzeller et al. [7] studied this question in two different cases: (1) when all

the flows going through the router are synchronized, i.e., the saw-tooth shapes are

CHAPTER 2. OVERVIEW: RULE-OF-THUMB AND SMALL BUFFERS 17

Si
ze

Time

C
on

ge
st

io
n

W
in

do
w

Figure 2.6: When the flows are perfectly synchronized (the dashed curve on the
bottom), their aggregate (the solid curve on top) will have a similar shape to the
saw-tooth shape of a single TCP flow.

perfectly in-phase, and (2) when the flows are desynchronized. They showed that the

buffer size requirements of the system drops significantly in the second scenario, and

provided evidence that this is what happens in practice. Here, we will give a brief

overview of their results.

2.2.1 Synchronized Flows

Let us consider N long-lived TCP flows going through a shared bottleneck link.

We denote the congestion window size of flow i at time t with Wi(t), its two-way

propagation delay with Ti, and the number of flow i packets which are in the queue

with Qi(t). If all the flows are perfectly synchronized, they will all reach the peak

of their saw-tooth at the same time (Figure 2.6). The total number of outstanding

packets, or the aggregate congestion window size, W (t), is then

W (t) =
N∑

i=1

Wi(t)

= 2Ti × C + Qi(t)

= 2T × C + Q(t).

Here, Q(t) is the total number of packets in the queue, and T is the effective

CHAPTER 2. OVERVIEW: RULE-OF-THUMB AND SMALL BUFFERS 18

one-way propagation delay of all flows.3

When the buffer is full, we have Q(t) = B. Thus,

W (t) = 2T × C + B.

Since all flows are synchronized, they halve their congestion window size at the

same point of time, which means the aggregate congestion window size is reduced to

W (t) = T × C + B/2.

This is very similar to the single-flow case: if we want to have 100% link utilization

the buffer size should be large enough to accommodate the variations in the aggregate

congestion window size, or

B ≥ 2T × C.

In other words, synchronized flows have the same buffer size requirements as

a single-flow. In the following section, we will overview the case where flows are

desynchronized.

2.2.2 Desynchronized Flows

When do flows become synchronized? The majority of results on flow synchroniza-

tion are based on ns-2 simulations [26, 50, 22], where the behavior of the system is

deterministic, and there is very little randomness coming from the complex struc-

ture of the network, switching devices, link-level errors, host service times, and user

behavior. On real networks, synchronization is much less frequent, and is largely

limited to the cases with a small number of very heavy flows. There is no evidence

of synchronization in large routers in the core of the Internet [24, 23, 28].

For a network with desynchronized flows, the aggregate congestion window size

does not have a regular saw-tooth pattern as in the case of synchronized flows (Fig-

ure 2.7). Different flows, will cancel each other out, and the aggregate congestion

3One can easily show that T is the harmonic average of {T1, T2, . . . , TN} defined as 1
T

=
∑N

i=1
1
Ti

.

CHAPTER 2. OVERVIEW: RULE-OF-THUMB AND SMALL BUFFERS 19

Si
ze

Time

C
on

ge
st

io
n

W
in

do
w

Figure 2.7: When the flows are not synchronized (the dashed curve on the bottom),
their aggregate (the solid curve on top) will become smoother as the number of flows
grows.

window size will become smoother. In fact, Appenzeller et al. have shown that as the

number of flows is increased the distance from the peak to the trough of the aggregate

window size will get smaller [7].

More formally, if we have N desynchronized TCP flows with random and indepen-

dent start times, and propagation delays, by applying the Central Limit Theorem,

we can show that the aggregate window size process will converge to a Gaussian pro-

cess. Interestingly, the standard deviation of the aggregate congestion window size

is decreased by a factor of
√

N .4 Hence, given that the buffer size requirement is

proportional to the standard deviation of the aggregate congestion window size, we

can reduce the buffer sizes with a factor of
√

N without degrading the performance

of the system. This is what we call the small buffer sizing rule, or

B =
2T × C√

N
. (2.2)

We emphasize the underlying assumptions in this rule: we have a large number

of flows that are independent, and desynchronized, and we want to have 100% link

utilization throughout the network. This result has major practical implications for

building routers, as it can result in a 2-3 orders of magnitude reduction in buffer sizes

without any cost to the throughput of the system.

4We refer the reader to Appenzeller’s Ph.D. thesis [6] for more detailed analysis, including cases
with short-lived and long-lived flows, as well as simulations and experiments on this.

CHAPTER 2. OVERVIEW: RULE-OF-THUMB AND SMALL BUFFERS 20

2.3 Summary

In this chapter, we gave a brief overview of the origins of the rule-of-thumb, and the

small buffer sizing rule. We showed that the rule-of-thumb comes from a setting with a

single TCP flow, which was typical at early days of the Internet. We also showed that

increasing the number of flows changes the buffer size requirements of the network if

the flows are desynchronized and independent. Specifically, we can reduce the buffer

sizes in the core of the Internet with a factor of
√

N if N independent flows share the

core link.

Chapter 3

Tiny Buffer Sizing Rule

In this chapter, we explore how buffers in the Internet backbone can be significantly

reduced to as little as a few dozen packets, if we are willing to sacrifice a small amount

of link capacity. For a typical Internet router today, this is 2-3 orders of magnitude

smaller than what is indicated by the small buffers rule, and the difference will grow

as the capacity of the network grows.

We argue that if the TCP sources are not overly bursty, then 20-50 packet buffers

are sufficient for high throughput. Specifically, we argue that O(log W) buffers are

sufficient, where W is the window size of each flow. We support our claim with

analysis, and a variety of simulations. The change we need to make to TCP is minimal

– each sender just needs to pace packet injections from its window. Moreover, there

is some evidence that such small buffers are sufficient even if we do not modify the

TCP sources so long as the access network is much slower than the backbone, which

is true today and likely to remain true in the future.1

3.1 Implications of Tiny Buffers

The problem of whether we can build networks with buffers as small as a few dozen

packets is an interesting intellectual exercise in its own right. There would also be

1Theoretical analysis presented in this chapter was done in collaboration with Mihaela Enachescu,
Ashish Goel, Tim Roughgarden, and Nick McKeown [18, 19].

21

CHAPTER 3. TINY BUFFER SIZING RULE 22

practical consequences if it were possible.

First, if big electronic routers required only a few dozen packet buffers, it could

reduce their complexity, making them easier to build and easier to scale. A typical

10 Gb/s router linecard today contains about one million packet buffers, using many

external DRAM chips. The board space the DRAMs occupy, the pins they require,

and the power they dissipate all limit the capacity of the router [7]. If a few dozen

packet buffers suffice, then packet buffers could be incorporated inside the network

processor (or ASIC) in a small on-chip SRAM; in fact, the buffers would only occupy

a tiny portion of the chip. Not only would external memories be removed, but the

reduction in buffer sizes would allow the use of fast on-chip SRAM, which scales

in speed much faster than DRAM. By eliminating some board space, and reducing

the complexity of the router, we can increase the density of the system, and simply

provide higher throughput.

Second, reduced buffer sizes could facilitate the building of all-optical routers.

With recent advances in optical technology [33, 34, 40], it is now possible to perform

all-optical switching, opening the door to routers with huge capacity and lower power

than electronic routers. These advances also make possible optical FCFS packet

buffers that can hold a few dozen packets in an integrated opto-electronic chip [40].2

Whether we can create an all-optical network then is a question of if having a network

with tiny buffers is feasible.

In the following section, we will describe the intuition behind the tiny buffer sizing

rule.

3.2 Tiny Buffers Intuition

Our main result in this chapter is that minor modifications to TCP would indeed allow

us to reduce buffer-sizes to dozens of packets with the expense of slightly reduced link

utilization. We obtain this result in a succession of steps. We will start by adopting

two strong assumptions: (1) That we could modify the way packets are transmitted

2Larger all-optical buffers remain infeasible, except with unwieldy spools of optical fiber (that
can only implement delay lines, not true FCFS packet buffers).

CHAPTER 3. TINY BUFFER SIZING RULE 23

by TCP senders, and (2) That the network is over-provisioned. However, we will soon

relax these assumptions.

We start by asking the following question: What if we kept the AIMD (Additive

Increase Multiplicative Decrease) dynamics of TCP window control, but changed

the TCP transmission scheme to “space out” packet transmissions from the TCP

sender, thereby making packet arrivals less bursty? We assume that each TCP flow

determines its window size using the standard TCP AIMD scheme. However, if the

current window size at time t is W and the current round-trip estimate is RTT, then

we assume the TCP sender sends according to a Poisson process of rate W/RTT at

time t. This results in the same average rate as sending W packets per RTT. While

this is a slightly unrealistic assumption (it can result in the window size being violated

and so might alter TCP behavior in undesirable ways), this scenario yields important

clues about the feasibility of very small buffers.

We are also going to assume that the network is over-provisioned – even if each flow

is sending at its maximum window size, the network will not be congested.3 Under

these assumptions, we show that a buffer size of O(log Wmax) packets is sufficient to

obtain close to peak throughput, where Wmax is the maximum congestion window

size in packets. Some elements of the proof are interesting in their own right.4 The

exact scenario is explained in Section 3.3 and the proof itself is in Appendix A.

To get some feel for these numbers, let us consider the scenario where 1000 flows

share a link of capacity 10 Gb/s. Assume that each flow has an RTT of 100ms, a

maximum window size of 64 KB, and a packet size of 1 KB. The peak rate is roughly

5Gb/s. The bandwidth-delay product rule-of-thumb suggests a buffer size of 125MB,

or around 125,000 packets. The 2T×C/
√

N rule suggests a buffer size of around 3950

packets. Our analysis suggests a buffer size of twelve packets plus some small additive

constant, which brings the buffer size down to the realm where optical buffers can be

3This assumption is less restrictive than it might appear. Current TCP implementations usually
cap window sizes at 32 KB or 64 KB [35], and it is widely believed that there is no congestion in the
core of the Internet. All optical networks, in particular, are likely to be significantly over-provisioned.
Later we will relax this assumption, too.

4For example, we do not need to assume the TCP equation [39] or aggregate Poisson arrivals [42]—
hence we do not rely on the simplifying assumptions about TCP dynamics and about a large number
of flows that are required for these two results.

CHAPTER 3. TINY BUFFER SIZING RULE 24

built in the near future.

We then systematically remove the two assumptions we made above, using a

combination of simulations and analysis. We first tackle the assumption that TCP

sends packets in a locally Poisson fashion. Intuitively, sending packets at fixed (rather

than random) intervals should give us the same benefit (or better) as sending packets

at a Poisson rate. Accordingly, we study the more reasonable case where the TCP

sending agent “paces” its packets deterministically over an entire RTT. Paced TCP

has been studied before [5, 49], and does not suffer from the problem of overshooting

the window size. We perform an extensive simulation study of paced TCP with small

buffers. When the network is over-provisioned, the performance of paced TCP closely

mirrors our analytical bound of O(log Wmax) for Poisson sources. This holds for a wide

range of capacities and number of flows, and not just in the regime where one might

expect the aggregate arrival process at the router to resemble a Poisson process [12].

These results are presented in Section 3.4. In Appendix B, we provide additional

intuition for this result: if many paced flows are superimposed after a random jitter,

then the packet drop probability is as small as with Poisson traffic.

The next assumption we attempt to remove is that of the network being over-

provisioned. We consider a single bottleneck link, and assume that if each flow were

to send at its maximum window size, then the link would be severely congested. In

our simulations (presented in Section 3.5), Paced TCP results in high throughput

(around 70-80%) with the relatively small buffers (10-20) predicted by the simple

Poisson-transmissions analysis. While we have not been able to extend our formal

analysis to the under-provisioned network case, some analytical intuition can also be

obtained: if we assume that the TCP equation [39] holds and that the router queue

follows the M/M/1/B dynamics, then buffers of size O(log Wmax) packets suffice to

utilize a constant fraction of the link capacity.

Our results are qualitatively different from the bandwidth-delay rule-of-thumb or

from the results of Appenzeller et al. On the positive side, we have completely removed

the dependence of the buffer size on the bandwidth-delay product. To understand

the importance of this, consider the scaling where the RTT is held fixed at τ , but the

maximum window size Wmax, the number of flows N , and the capacity C all go to∞

CHAPTER 3. TINY BUFFER SIZING RULE 25

such that C = NWmax/τ . This is a very reasonable scaling since τ is limited by the

speed of light, whereas C, N , and Wmax are all expected to keep growing as Internet

traffic scales. Under this scaling, the sizing rule of Appenzeller et al. suggests that the

buffer size should grow as
√

NWmax, whereas our results suggest that the buffer size

needs to grow only at the much more benign rate of log Wmax. On the negative side,

unlike the result of Appenzeller et al. , our result is a trade-off result—to obtain this

large decrease in buffers, we have to sacrifice some fixed fraction (say around 20%)

of link capacity. This is a good trade-off for an all-optical network where bandwidth

is plentiful and buffers are scarce. But for electronic routers, this might possibly be

a sub-optimal trade-off.

We give evidence that our result is tight in the following sense.

1. Under the scaling described above, buffers must at least grow in proportion

to log Wmax to obtain a constant factor link utilization. In Section 3.6, we

present simulation evidence that constant sized buffers are not adequate as the

maximum window size grows to infinity. We also perform a simple calculation

that shows the necessity of the log-scaling assuming the TCP equation and

M/M/1/B queueing.

2. When we run simulations without using Paced TCP, we can not obtain reason-

able link utilizations with log-sized buffers, even in the over-provisioned case

(Section 3.4).

While TCP pacing is arguably a small price to pay for drastic reduction in buffer

sizes, it does require a change to end-hosts. Fortunately, we suspect this may not be

necessary, as two effects naturally provide some pacing in current networks. First, the

access links are typically much slower than the core links, and so traffic entering the

core from access links is automatically paced; we call this phenomenon “link-pacing”.

We present simulations showing that with link-pacing we only need very small buffers,

because packets are spaced enough by the network. Second, the ACK-clocking scheme

of TCP paces packets [5]. The full impact of these two phenomena deserves further

study.

CHAPTER 3. TINY BUFFER SIZING RULE 26

Of course, significant additional work—including experimental verification, more

detailed analysis, and larger simulation studies—is required before we undertake a

drastic reduction in buffer sizes in the current Internet.

3.3 Poisson Injections, Over-provisioned Network

Let us imagine for a moment that each flow is an independent Poisson process. This

is clearly an unrealistic (and incorrect) assumption, but it serves to illustrate the

intuition. Assume too that each router behaves like an M/M/1 queue. The drop-rate

would be ρB, where ρ is the link utilization and B is the buffer size. At 75% load

and with 20 packet buffers, the drop rate would be 0.3%, independent of the RTT ,

number of flows, and link-rate. This should be compared with a typical 10Gb/s router

line-card today that maintains 1,000,000 packet buffers, and its buffer size is dictated

by the RTT, number of flows and link-rate. In essence, the cost of not having Poisson

arrivals is about five orders of magnitude more buffering! An interesting question is:

How “Poisson-like” do the flows need to be in order to reap most of the benefit of

very small buffers?

To answer our question, assume N long-lived TCP flows share a bottleneck link.

Flow i has time-varying window size Wi(t) and follows TCP’s AIMD dynamics. In

other words if the source receives an ACK at time t, it will increase the window

size by 1/Wi(t), and if the flow detects a packet loss it will decrease the congestion

window by a factor of two. In any time interval (t, t′] when the congestion window

size is fixed, the source will send packets as a Poisson process at rate Wi(t)/RTT.

Note that this is different from regular TCP, which typically sends packets as a burst

at the start of the window.

We will assume that the window size is bounded by Wmax. Implementations

today typically have a bound imposed by the operating system (Linux defaults to

Wmax = 64 KB), or the window size is limited by the speed of the access link. We will

make the simplifying assumption that the two-way propagation delay of each flow is

RTT. Having a different propagation delay for each flow leads to the same results,

but the analysis is more complicated. The capacity C of the shared link is assumed

CHAPTER 3. TINY BUFFER SIZING RULE 27

to be at least (1/ρ) ·NWmax/RTT where ρ is some constant less than 1. Hence, the

network is over-provisioned by a factor of 1/ρ, i.e. the peak throughput is ρC. The

effective utilization, θ, is defined as the achieved throughput divided by ρC.

In this scenario, the following theorem holds:

Theorem 1. To achieve an effective utilization of θ, a buffer of size

B <= log1/ρ

(
W 2

max

2(1− θ)

)
(3.1)

suffices.

The proof comes in Appendix A.

As an example of the consequences of this simple model, if Wmax = 64 packets,

ρ = 0.5, and we want an effective utilization of 90%, we need a buffer size of 15 packets

regardless of the link capacity. In other words, the AIMD dynamics of TCP do not

necessarily force us to use larger buffers, if the arrivals are well-behaved and non-

bursty. So what happens if we make the model more realistic? In the next section we

consider what happens if instead of injecting packets according to a Poisson process,

each source uses Paced TCP in which packets are spread uniformly throughout the

window.

3.4 Paced TCP, Over-provisioned Network

It should come as no surprise that we can use very small buffers when arrivals are

Poisson: arrivals to the router are benign and non-bursty. Queues tend to build up—

and hence we need larger buffers—when large bursts arrive, such as when a TCP

source sends all of its outstanding packets at the start of the congestion window. But

we can prevent this from happening if we make the source spread the packets over the

whole window. Intuitively, this modification should prevent bursts and hence remove

the need for large buffers. We now show that this is indeed the case. Throughout

this section, we assume that the bottleneck link is over-provisioned in the same sense

as in the previous section. In the next section we remove this assumption.

CHAPTER 3. TINY BUFFER SIZING RULE 28

0

20

40

60

80

100

0 20 40 60 80 100

Buffer Size (Pkts)

T
hr

ou
gh

pu
t (

%
)

TCP Reno
Paced TCP

Figure 3.1: Bottleneck link utilization for different buffer sizes (TCP Reno vs. Paced
TCP)

First, suppose N flows, each with maximum window size Wmax, share a bottleneck

link. Then the following is true.

Theorem 2.Assume that: (1) The buffer size at the bottleneck link is at least cB log Wmax

packets, where cB > 0 is a sufficiently large constant; (2) The rate of each flow is at least

a cS log Wmax factor slower than that of the bottleneck link, where cS is a sufficiently

large constant; and (3) Random jitter prevents a priori synchronization of the flows. Then

the packet loss probability during a single RTT is O(1/W 2
max).

Please see Appendix B for proof of this theorem.

The packet loss probability in Theorem 2 is comparable to that for Poisson traffic

with the same buffer size. The buffer size requirement for Theorem 2 (Assumption (1))

CHAPTER 3. TINY BUFFER SIZING RULE 29

is comparable to that in Theorem 1—a few dozen packets for present-day window

sizes, independent of the link capacity, number of flows, and RTT. This requirement

appears to be necessary to achieve constant throughput, even with Paced TCP (see

Section 3.6). The second assumption states that flows should be “sufficiently non-

bursty”. Note that some assumption of this form is necessary, since if flows can send

at the same rate as the bottleneck link, then there is no pacing of traffic whatsoever

and our simulations indicate that constant throughput is not achievable with log-sized

buffers. Precisely, Theorem 2 requires that all flows send at a rate that is roughly

a log Wmax factor slower than that of the bottleneck link, and obtains a Poisson-

like throughput-buffer size trade-off under this requirement. This slowdown factor

is only a few dozen for present-day window sizes, while access links are often orders

of magnitude slower than backbone links. This huge difference in access link and

backbone link speeds also seems likely to persist in the near future (especially with

an all-optical backbone). The final assumption of Theorem 2 simply ensures that the

flows are not initialized in a synchronized state.

To explore the validity of Theorem 2, we performed simulations using ns-2 [4]. We

implemented Paced TCP by adding a new timer to TCP Reno which regulates the

injection time of packets. This is a high granularity timer, since using low granularity

timers might generate bursts, which is undesirable.5 Each flow is generated at a source

node, goes through an individual access link, and then through a shared link. The

capacity and the propagation delay of the shared and access links vary for different

simulations. We add a random jitter to the propagation delay of the access links to

model different RTTs in the network.

In Figure 3.1 we compare the buffer size needed by TCP Reno with Paced TCP.

We plot the throughput of the system as a function of the buffer size used in the

router. The capacity of the bottleneck link is 100Mb/s, there are 40 flows in the

system, and the average RTT is 100ms. In this experiment, the maximum congestion

window size is set to 32 packets, and the size of packets is 1,000 bytes, thus the

maximum offered load is 100Mb/s with 40 flows. The simulation is run for 1,000

5The implementation of Paced TCP that comes with ns-2 is not accurate and needs some modi-
fications.

CHAPTER 3. TINY BUFFER SIZING RULE 30

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer size (packets)

Th
ro

ug
hp

ut
1 flow
10 flows
20 flows
40 flows

100 101 102
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer size (packets)

Th
ro

ug
hp

ut

1 flow
10 flows
20 flows
40 flows

(a) (b)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer size (packets)

Th
ro

ug
hp

ut

1 flow
10 flows
20 flows
40 flows

100 101 102
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer size (packets)

Th
ro

ug
hp

ut

1 flow
10 flows
20 flows
40 flows

(c) (d)

Figure 3.2: Bottleneck link utilization for different buffer sizes and number of flows.
(a) TCP reno (b) TCP Reno with logarithmic x-axis (c) paced TCP (d) Paced TCP
with logarithmic x-axis. The maximum possible offered load is 0.026 with one flow,
0.26 with 10 flows, 0.52 with 20 flows, and 1 with 40 flows.

seconds, and we start recording the data after 200 seconds.

As we can see, with 40 unmodified TCP (Reno) flows, we need to buffer about

100 packets to achieve a throughput above 80%. However, in the same setting, Paced

TCP achieves 80% throughput with just 10 packet buffers.

Reducing the number of flows from 40 will reduce the overall system throughput,

as individual flows have a limited congestion window size. For instance, with 20 flows

we expect to have a throughput of around 50% if we have enough buffers. Figure 3.2

shows the bottleneck link utilization for various buffer sizes when we have 1, 10, 20,

CHAPTER 3. TINY BUFFER SIZING RULE 31

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Time

C
W

N
D

_
TCP−Reno
Paced TCP

Figure 3.3: Congestion window size (TCP Reno vs. Paced TCP)

and 40 TCP Reno or Paced TCP flows in the system. We can see that TCP Reno still

needs relatively large buffers even when we reduce the number of flows (and thus the

load) in the system. For instance, for 20 flows, we will need 50 packets of buffering to

reach the maximum utilization (which is roughly 50%). However, with Paced TCP

we need less than 10 packets of buffering to gain the same utilization. In other words,

with TCP Reno even though decreasing the number of flows, and the system load

reduces the buffer size requirements, it still is in the order of the bandwidth-delay

product. With Paced TCP on the other hand the tiny buffers rule can be applied

regardless of the number of flows.

To understand the impact of pacing, we take a closer look at the congestion window

(CWND) of TCP Reno and Paced TCP in Figure 3.3. In this experiment, 500 flows

CHAPTER 3. TINY BUFFER SIZING RULE 32

share a bottleneck link with a capacity of 1.5Gb/s; the buffer size is 10 packets; and

each flow is limited to a maximum window size of 32 packets6 and the average RTT

is 100ms. We observe that TCP Reno rarely reaches the maximum window size of 32

packets, whereas Paced TCP has a larger congestion window at almost all times. The

bursty nature of TCP Reno makes the flows experience packet drops more frequently

when the buffer size is small, while Paced TCP flows experience fewer drops, and so

CWND grows to larger values. Consequently, Paced TCP sends with its maximum

possible capacity of 32 packets per RTT most of the time.

In Figure 3.2 we increased the system load as we increased the number of flows

since the capacity of the shared link is kept fixed. It is interesting to see what happens

if we keep the system load constant (at 80% in this case) while increasing the number

of flows. This is illustrated in Figure 3.4, for flows with a maximum congestion

window of 32 packets. As we increase the number of flows from one to more than a

thousand, we also increase the bottleneck link capacity from 3.2Mb/s to 3.4Gb/s to

keep the peak load at about 80%. The buffer size is still set to 10 packets. The graph

shows that regardless of the number of flows, throughput is improved by Paced TCP.

The throughput of Paced TCP is around 70% (i.e., the effective utilization is more

than 85%) while the throughput of the TCP Reno is around 20% (with an effective

utilization of around 25%) regardless of the number of flows in the system.

We have shown that Paced TCP can gain a very high throughput even with very

small buffers. As we have already noted, if the capacity of the access links is much

smaller than the core link, then packets entering the core will automatically have

spacing between them even without modifying TCP. To verify this we repeat the

previous experiment except instead of using Paced TCP, we limit the capacity of the

access links to 5Mb/s. As shown in Figure 3.4, the spacing resulting from limited

access link capacities has the same effect as using Paced TCP since the two curves

follow each other very closely. In practice, the capacity of the access links is usually

several orders of magnitude smaller than the capacity of the core links, which means

even without any modification to TCP, we can gain high throughput with very small

6Note that CWND can go beyond 32 packets in practice, and the source can have up to
min(32,CWND) unacknowledged packets at any point of time.

CHAPTER 3. TINY BUFFER SIZING RULE 33

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of flows

Th
ro

ug
hp

ut
Paced TCP
TCP Reno
Limited Access

Figure 3.4: Throughput of Paced TCP vs. TCP Reno; the capacity of shared link is
increased as we increase the number of flows.

buffers.

It is important to note that this significant discrepancy between the throughput of

paced and regular TCP is observed only with small buffers. If we use the bandwidth-

delay rule for sizing buffers, this discrepancy vanishes.

3.5 Paced TCP, Under-provisioned Network

So far we have assumed that the network is over-provisioned and we do not have

congestion on the link under study. Even though this is true for most links in the

CHAPTER 3. TINY BUFFER SIZING RULE 34

100 101 102 103
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer size (packets)

Th
ro

ug
hp

ut

20 Flows
40 Flows
100 Flows
200 Flows

Figure 3.5: Bottleneck link utilization vs. the buffer size. With only 40 flows the
core link becomes saturated, but even if we increase the number up to 200 flows, the
throughput does not go below 80%.

core of the Internet, it is also interesting to relax this assumption. We next study,

via simulations, how congestion affects link utilization.

We repeat an experiment similar to that depicted in Figure 3.1 (this time with

Paced TCP only). We increase the number of flows to up to 200 so that the bottleneck

link becomes congested. The average RTT is 100ms, and the maximum window size

is 32 packets. Each packet is 1000 bytes, which means each flow can contribute a

load of 32× 1000× 8/0.1 ' 2.5Mb/s. The capacity of the core link is 100Mb/s, i.e.

the core link will become congested if we have more than 40 flows. For 100 and 200

flows the bottleneck link is highly overloaded.

CHAPTER 3. TINY BUFFER SIZING RULE 35

Figure 3.5 shows the throughput of the bottleneck link as a function of the buffer

size for various number of flows. We can see that as we increase the number of flows

from 20 to 40 (at which point the link starts to be saturated) the throughput goes

from around 50% to about 80-90%. As we increase the number of flows to 100 and 200,

for small buffers (1-12 packets) the system throughput slightly improves. For middle

size buffers (15-100 packets), however, we see a degradation in throughput, although

the throughput never goes below 80%. This minor degradation in performance is due

to the partial synchronization between congestion windows of flows, which occurs for

middle sized buffers. This phenomenon has been explained by Raina and Wischik [42]

in more detail. We note that the throughput of the system remains above 80% even

when the buffer size is 10 packets.

Figure 3.6 depicts the throughput of the bottleneck link as a function of the

number of flows when the access link capacity is fixed to 5Mb/s and the buffer size is

10 packets. We change the offered load to the system by adjusting the capacity of the

bottleneck link relative to the total capacity of the access links. To keep the maximum

offered load fixed at a given value, we increase the capacity of the bottleneck link as

the number of flows is increased. As we can see in this graph, as we increase the

offered load beyond 100%, the overall throughput increases. In other words, even

when the network is under-provisioned we expect reasonable throughput with very

small buffers.

In a related experiment we set the core link bandwidth to 1Gb/s, and vary the

capacity of the access links. The maximum window size is very large (set to 10,000),

the buffer size is set to 10 packets, and the average RTT is set to 100ms. Figure 3.7

shows the throughput of the system as a function of the capacity of the access links.

We can see that at the beginning the throughput increases (almost) linearly with

access link capacity, until the shared link becomes congested. For example, with 100

flows, this happens when the access link capacity is below 8-9Mb/s. Note that the

normalized throughput is close to 100% when the offered load is less than the capacity

of the shared link since the core link is not the bottleneck. As we increase the access

link capacity, the throughput gradually decreases. This is because we lose the natural

spacing between packets as the capacity of access links is increased.

CHAPTER 3. TINY BUFFER SIZING RULE 36

0 200 400 600 800 1000 1200 1400 1600
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of flows

Th
ro

ug
hp

ut
Load = 60%
Load = 85%
Load = 95%
Load = 120%
Load = 200%

Figure 3.6: Throughput as a function of number of flows for various values of the
offered load to the system.

3.6 The Necessity of Logarithmic Scaling of Buffer

Sizes

We have not been able to extend our proof of theorem 1 to the case when the network

is under-provisioned. However, the TCP equation [39] gives interesting insights if we

assume that the router queue can be modeled as an M/M/1/B system [44]. Consider

the scaling (described in the introduction) where the RTT is held fixed at τ , but the

maximum window size Wmax, the number of flows N , and the capacity C all go to

∞. To capture the fact that the network is under-provisioned, we will assume that

C = NWmax

2τ
i.e. the link can only support half the peak rate of each flow. Similarly,

CHAPTER 3. TINY BUFFER SIZING RULE 37

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Access link bandwidth (Mb/s)

Th
ro

ug
hp

ut

100 Flows
200 Flows

Figure 3.7: Throughput as a function of access link capacity.

C = 2NWmax

τ
represents the under-provisioned case.

Let p be the drop probability, and ρ the link utilization. Clearly, ρ = RN/C,

where R is the average throughput of each flow. Then, the TCP equation states:

R =
1

τ

√
3

2p
+ o(1/

√
p) ' 1

τ

√
3

2p
. (3.2)

The M/M/1/B assumption yields [32]:

p = ρB 1− ρ

1− ρB

ρ

1 + ρ
' ρB+1. (3.3)

Equations 3.2, 3.3 immediately yield the following:

CHAPTER 3. TINY BUFFER SIZING RULE 38

0 500 1000 1500 2000 2500
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Link bandwidth (Mb/s)

U
til

iz
at

io
n

Constant buffer size
Logarithmic buffer size

Figure 3.8: Constant vs. logarithmic buffers.

1. Assume C = NWmax

2τ
. For every constant α < 1, there exists another constant

β such that setting B = β log Wmax yields ρ > α. In other words, logarithmic

buffer-sizes suffice for obtaining constant link utilization even when the network

is under-provisioned.

2. Assume C = 2NWmax

τ
. If B = o(log Wmax) then ρ = o(1). In other words, if the

buffer size grows slower than log Wmax then the link utilization drops to 0 even

in the over-provisioned case.

Obtaining formal proofs of the above statements remains an interesting open prob-

lem. Simulation evidence supports these claims, as can be seen in Figure 3.8 which

CHAPTER 3. TINY BUFFER SIZING RULE 39

describes the throughput for a constant vs. a logarithmic sized buffer. For this sim-

ulation we are using Paced TCP, N is held fixed at 10, Wmax varies from 10 to 1529,

and C varies as follows. Initially, C is chosen so that the peak load is constant and

a little over 50%, and this choice determines the initial value for the ratio CRTT
NWmax

;

then, since we fix N and RTT, C varies proportionally to Wmax to keep the above

ratio constant as in our theoretical modeling. The buffer size is set to 5 packets when

Wmax = 10. Thereafter, it increases in proportion with log Wmax for the log-sized-

buffer case, and remains fixed at 5 for the constant buffer case. Here, initially the

throughput is around 50% for both buffer sizing schemes. However, the throughput

for the constant sized buffer drops significantly as C and Wmax increase, while for

the logarithmic sized buffer the throughput remains approximately the same, just as

predicted by our theoretical model.

3.7 Summary

Our theoretical and simulation results in this chapter suggest packet buffers can be

made much smaller; perhaps as small as 10-20 packets, if we are prepared to sacrifice

some of the link capacity. It appears from simulation - though we have not been

able to prove it - that the buffer size dictates directly how much link capacity is

lost, however congested the network is. For example, a 40Gb/s link with 15 packet

buffers could be considered to operate like a 30Gb/s link. Of course, this loss in link

capacity could be eliminated by making the router run faster than the link-rate. In a

future network with abundant link capacity, this could be a very good trade-off: Use

tiny buffers so that we can process packets optically. In the past, it was reasonable

to assume that packet buffers were cheap, while long-haul links were expensive and

needed to be fully utilized. Today, fast, large packet buffers are relatively painful to

design and deploy; whereas link capacity is plentiful and it is common for links to

operate well below capacity. This is even more so in an all-optical network where

packet buffers are extremely costly and capacity is abundant.

Our results lead to some other interesting observations. It seems that TCP dy-

namics have very little effect on buffer-sizing, and hence these results should apply to

CHAPTER 3. TINY BUFFER SIZING RULE 40

a very broad class of traffic. This is surprising, and counters the prevailing wisdom

(and our own prior assumption) that buffers should be made large because of TCP’s

saw-tooth behavior.

Chapter 4

Buffer Sizing Experiments

So far we have described several rules for buffer sizing in Internet backbone routers.

The bandwidth-delay rule-of-thumb for buffer sizing is based on the saw-tooth dy-

namics of a single TCP flow. Based on this rule, Internet routers require extremely

large buffers, and the buffer size needs to grow linearly with the capacity of the

links. Clearly, this rule has significant implications in terms of complexity for Inter-

net routers.

The small buffers rule on the other hand, is based on the observation that as

the number of flows increases, the aggregate window size process (the sum of all the

congestion window size processes for each flow) decreases, following a central limit

theorem. The result relies on several assumptions: (1) that flows are sufficiently

independent of each other to be desynchronized, (2) that the buffer size is dominated

by the long-lived flows, and perhaps most importantly (3) that there are no other

significant, unmodeled reasons for buffering more packets. If the result is correct, then

a backbone link carrying 10,000 long-lived flows could have its buffer size reduced by

a factor of 100 without loss in throughput. If, though, the results are wrong, then

the consequences of reducing the buffers in a router, or in an operational commercial

network, could be quite severe. The problem is, how to decide if the result is correct,

without trying it in an operational network? But who would reduce buffers in an

operational network, and risk losing customers’ traffic, before knowing if the result is

correct?

41

CHAPTER 4. BUFFER SIZING EXPERIMENTS 42

Based on the tiny buffers rule, we can reduce buffers much further to O(1) ≈
20 − 50 packets in today’s backbone routers [18, 41, 19]. This conclusion is reached

by considering the tradeoff between reducing buffers and losing some throughput –

assumed to be 10-20%. In other words, when congested, links behave as if they run at

80-90% of their nominal rates. This could be an interesting assumption in networks

with abundant link capacity, or in future optical networks where link capacity might

be cheaper than buffers. The results depend on the network traffic being non-bursty,

which can happen in two ways: (1) If the core links run much faster than the access

links (which they do today), then the packets from a source are spread out and bursts

are broken, or (2) TCP sources are changed so as to pace the delivery of packets. If

the results are correct, and relevant, then a backbone link could reduce its buffers by

five orders of magnitude.

Again, it is difficult to validate these results in an operational network, and we are

not aware of any other laboratory or network experiments to test the O(1) results.

So it is the goal of our work to experiment with small buffers and tiny buffers in

laboratory and operational networks.

Throughout this chapter, we describe a number of laboratory and network experi-

ments that were performed (by us and by others) during 2003 to 2006. The laboratory

experiments were performed in the WAIL laboratory at University of Wisconsin Madi-

son, at Sprint Advanced Technology Laboratory, Verizon, and Lucent. Experiments

were also performed on the following operational networks: Level 3 Communications’

operational backbone network, Internet2 and Stanford University dormitory traffic.

We should make clear that our results are necessarily limited: While a laboratory

network can use commercial backbone routers and accurate TCP sources, it is not

the same as a real operational backbone network with millions of real users. On the

other hand, experiments on an operational network are inevitably limited by the abil-

ity to control and observe the experiments. Commercial routers do not offer accurate

ways to set the buffer size, and do not collect real time data on the occupancy of their

queues. And real network experiments are not repeatable for different buffer sizes,

making apples-with-apples comparisons difficult.

In laboratory experiments, we generate live TCP traffic (ftp, telnet, or http) using

CHAPTER 4. BUFFER SIZING EXPERIMENTS 43

a cluster of PCs or commercial traffic generators. We measure the performance from

either real-time or statistical traces collected from the system. On one hand, we

have a lot of control on the experiments, and can observe almost anything. On the

other hand, the traffic is synthetic and might not represent real users. We note that

we cannot simply use traces gathered from operational backbone networks for buffer

sizing experiments, because TCP uses a feedback loop to control congestion.

In our experiments on operational backbone networks we can test the results with

real user traffic. However, we have no control over the traffic pattern or the system

load. For example, Internet2 has very low load (about 20 − 30%), which means

congestion does not happen naturally. Fortunately, at the time of our experiments,

part of the Level 3 Communications network ran at very high link utilization (up to

96%). We report results from both networks.

Where possible, we ran experiments over a wide range of operating conditions for

both the small buffer and tiny buffer models, including system load ranging from 25%

up to 100%, different number of users, various traffic patterns and flow sizes, different

propagation delays, access link capacities, and congestion window limits.

4.1 Small Buffers Experiments

We start with, perhaps, the most interesting experiments, which were performed on

Level 3 Communications’ operational commercial backbone network. We follow these

experiments with summaries of other experiments in different networks.

4.1.1 Experiment Setup and Characteristics

Although we have limited control of an operational network, these experiments have

several interesting properties. The links under study were highly utilized with real live

traffic. Their utilization varied between 28.61% and 95.85% during a 24 hour period,

and remained above 85− 90% for about four hours every day (an exceptionally high

value [29]- new link capacity was added right after the experiments were done).

The link under study consisted of three physical, load-balanced links (Figure 4.1).

CHAPTER 4. BUFFER SIZING EXPERIMENTS 44

Figure 4.1: Setup used for buffer sizing experiments in Level 3 Communications’
backbone network. The incoming traffic to Router A was divided amongst the three
links connecting Router A to Router B using a static hash function balancing flows
over the three links.

Traffic at the upstream router is divided equally among the three physical links. Each

incoming flow is assigned to one of the three links using a static hash function based

on the source-destination IP and port numbers of the flow. Ideally, there is equal

traffic on each link (particularly as there are thousands of flows). If we give each

physical link a different amount of buffering, we can perform an apples-with-apples

comparison between different buffer sizes under almost identical conditions.

The three physical links are OC-48 (2.5Gb/s) backbone links, carrying mostly a

mixture of traffic from cable modem and DSL users. Assuming an average rate of

250Kb/s per flow, each link carries about 10,000 flows when highly utilized. The

default buffer size was 190ms per-link (60MBytes or 125,000 packets assuming an

average packet size of 500B). We reduced the buffer sizes to 10ms (about 3MB or

6,000 packets), 5ms (1.5MB or 3,000 packets), 2.5ms (750KB or 1,500 packets) and

1ms (300KB or 600 packets). Based on the small buffer sizing model, we can expect

to need a buffer size of about 2-6ms (depending on the actual value of N).

The buffer sizes were set for 5 days, so they capture the impact of daily and

weekly changes in traffic. The whole experiment lasted two weeks in March, 2005.

We gathered link throughput and packet drop statistics from each of the three links

CHAPTER 4. BUFFER SIZING EXPERIMENTS 45

0

0.04

0.08

0.12

0.16

0.2

0 20 40 60 80 100

Load (%)

Pa
ck

et
 D

ro
p

R
at

e
(%

)

Figure 4.2: Packet drop rate as a function of load for buffer sizes equal to 190ms,
10ms, and 5ms. We did not observe any packet drops in these experiments.

which were collected by the router every 30 seconds. It would have been preferable to

capture all packets and recreate the time series of the buffer occupancy in the router.

But the network did not have the facility to do this. Still, we are able to infer some

interesting results.

We also actively injected test flows, measuring the throughput and drops, and

compared the performance of the flows going through different links to find out the

impact of buffer size reduction. The amount of test flow traffic was kept small.

It is worth noting that the network does not use traffic shaping at the edges or in

the core. The routers do not use RED, and packets are dropped from the tail of the

queue.

4.1.2 Experiment Results

During the course of the experiments, we always kept the buffer size on one link

at its original size of 190ms, and reduced the buffer size on the other two links.

CHAPTER 4. BUFFER SIZING EXPERIMENTS 46

0

0.04

0.08

0.12

0.16

0.2

0 20 40 60 80 100

Load (%)

Pa
ck

et
 D

ro
p

R
at

e
(%

)

Figure 4.3: Packet drop rate as a function of load for buffer size of 2.5ms. We saw
packet drops in only a handful of cases.

Figures 4.2, 4.3, and 4.4 show the packet drop rate as a function of system load for

various buffer sizes. As explained before, both the load and drop rates are measured

in time intervals of 30 seconds, and each dot in the graph represents one such interval.

Figure 4.2 shows that for buffer sizes of 190ms, 10ms, and 5ms we did not see a single

packet drop during the course of the experiments, which lasted more than 10 days for

the 190ms buffer size, and about 5 days for each of the 10ms and 5ms buffer sizes!

Reducing the buffers by a factor of forty, without dropping packets, when the

utilization frequently exceeds 95% is quite surprising. It suggests that the backbone

traffic is very smooth (and presumably any self-similarity has no effect at this degree

of multiplexing). Others have also reported smoothness in traffic in core networks

[24, 23], despite somewhat older results which show self-similarity in core traffic [21,

20, 45]. Whether this is a result of a shift in traffic pattern and network characteristics

over time, or simply the consequence of huge amounts of multiplexing, remains to be

determined. We have found traffic to be extremely smooth in the laboratory and

backbone networks we have studied, when there are a large number of flows.

CHAPTER 4. BUFFER SIZING EXPERIMENTS 47

0

0.04

0.08

0.12

0.16

0.2

0 20 40 60 80 100

Load (%)

Pa
ck

et
 D

ro
p

R
at

e
(%

)

Figure 4.4: Packet drop rate as a function of load for a buffer size of 1ms. We observed
packet drops during high utilization time periods.

Figure 4.3 shows the drop rate as a function of load, when the buffer sizes are

reduced to 2.5ms. This is in the lower part of the range defined by the small buffer

sizing model, and as expected we start to observe some packet drops. However, packet

drops are still rare; less than 0.02% for the majority of samples. In two samples over

five days, we see a packet drop rate between 0.02% and 0.04% and in one sample the

drop rate is close to 0.09%.

Figure 4.4 shows what happens when we reduce the buffer size to 1ms. Here,

there are a lot more packet drops, which we expect because the buffer size is now

about half the value suggested by the small buffer sizing rule. It is interesting to note

that almost all the drops occur when the load is above 90% - even though the load

value is averaged over a period of 30 seconds. The instantaneous load is presumably

higher, and the link must be the bottleneck for some of the flows. We conclude that

having some packet drops does not lead to a reduction in available throughput; it

appears that TCP’s congestion control algorithms are functioning well. In none of

these experiments, we observed a significant change in performance of the test flows

CHAPTER 4. BUFFER SIZING EXPERIMENTS 48

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Time

R
el

at
iv

e
U

til
iz

at
io

n

Day 1 Day 3Day 2

Figure 4.5: Relative utilization of two links with 1ms and 190ms of buffering over
time.

injected to the network.

Figure 4.5 compares the link utilization for the links with 190ms and 1ms of

buffering, over three days. Ideally, the utilization on both links would be equal at all

times; which they are and their difference is almost always less than 10%. However,

the differences are not symmetric. The link with 1ms buffering has a slightly higher

utilization for the majority of the time.

We take a closer look at the cause of this asymmetry. Figure 4.5 depicts the link

utilization as a function of time. By comparing this graph with Figure 4.6 we observe

that during the periods when the overall load of the system is high, the link with

1ms has a slightly higher utilization than the link with 190ms. Figure 4.7 suggests

the same, in a different yet more precise way. Each dot in this figure, represents the

utilization of the two links in a period of 30 seconds. The majority of dots fall below

the 45 degree line in the graph.

The higher utilization with smaller buffers can be associated with two possible

reasons: (1) It might be due to higher loads on the link with 1ms of buffering. Since

CHAPTER 4. BUFFER SIZING EXPERIMENTS 49

20
30
40
50
60
70
80
90

100

Time

U
til

iz
at

io
n

(%
)

Buffer 1ms Buffer 190ms

Day 1 Day 3Day 2

Figure 4.6: Utilization of links with 1ms and 190ms of buffering.

we have more drops on this link, sources need to send duplicates of the dropped

packets, and that might be why we see a higher load. Or, (2) the load balancing

scheme might be skewed and might divide the traffic somewhat unevenly among the

three links, thus directing more traffic to one of the links.

We see the same phenomena (higher utilization in one link than the others) when

the buffer sizes are set to 190ms, and 5ms on two links. Since we did not have

any packet drops in these cases, there must be no difference in buffer occupancies,

and therefore (1) cannot be the reason here, i.e., any difference in utilization is most

probably not a result of the reaction of TCP sources to packet drops.1 In other words,

we associate these slight differences between link utilizations with imperfections in the

load balancing scheme deployed in the system, rather than the changes in buffer sizes.

We conclude that reducing buffer sizes in this network does not have a significant

impact on the performance.

1The load balancing scheme used in this system was changed after these experiments.

CHAPTER 4. BUFFER SIZING EXPERIMENTS 50

20

40

60

80

100

20 40 60 80 100
Utilization (%) - link with 1ms buffer

U
til

iz
at

io
n

(%
) -

 li
nk

 w
ith

 1
90

m
s

bu
ffe

r

Figure 4.7: Utilization of 1ms buffer link vs. the utilization of the 190ms buffer link.

4.1.3 Other Small Buffer Experiments

Other than the experiments on Level 3 Communications’ backbone network, other ex-

periments on small buffer sizing model have been conducted by us and others. These

experiments include University of Wisconsin Madison’s Advanced Internet Labora-

tory (WAIL), and Stanford University’s dormitory network.

The WAIL experiment, reported by Appenzeller et al. [7], a cluster of PCs is used

to generate up to 400 live TCP flows, and the traffic is directed to a Cisco GSR router.

The buffer sizes on the router are reduced by a factor of 10-20, which does not result

in any degradation in the system throughput. In Stanford University experiment, a

Cisco VXR 7200 router was used to connect the dormitories to the Internet via a

100Mb/s link. Traffic was from a mix of different applications including web, ftp,

games, peer-to-peer, Streaming and others, and we had 400-1900 flows at any given

time. The buffer sizes on the router were reduced by a factor of 20, with no impact

on network throughput. We refer the interested reader to Appenzeller’s Ph.D. thesis

for more details on these experiments [6].

CHAPTER 4. BUFFER SIZING EXPERIMENTS 51

1Gb/s
1Gb/s

1Gb/s Subnet 1Subnet 331Gb/s Subnet 34Subnet 66Subnet 67Subnet 99
Juniper T640 RouterClients

Servers

15Mb/sBottleneck

Traffic Flow Direction
Figure 4.8: Topology of the network used in experiments. The capacity of core links
is 1Gb/s, and the capacity of access links is 15Mb/s.

4.2 Tiny Buffers Experiments

In this section, we describe our experiments on tiny buffer sizing model. These

experiments are carried out in the context of the tiny buffer sizing theory: i.e., we

consider a single point of congestion, assume core links run much faster than the access

links, and expect a 10-20% reduction in network throughput. Without a guarantee

that these conditions hold in an operational backbone network, it is not feasible to

test tiny buffer model, and therefore, we have to content ourselves to laboratory

experiments. We understand this is a limiting factor, and view our work as a first

pass in a more comprehensive experimental study of the tiny buffer sizing model by

us and others.

We built a test-bed in collaboration with Sprint ATL for tiny buffer experiments.

CHAPTER 4. BUFFER SIZING EXPERIMENTS 52

1Gb/sAvalanche Reflector1Gb/s1Gb/s1Gb/sJuniper T640 Router
Figure 4.9: Tiny buffer experiment setup.

Figure 4.8 shows the topology of the emulated network, which is similar to the set-

ting considered in tiny buffer sizing theory [19]. The core of the experiments is a

Juniper T640 router, whose buffers are modified throughout the study.2 The router

is connected to four different networks through four Gigabit Ethernet interfaces. Each

cloud in Figure 4.8 represents one of these networks. The cloud on the left contains

all the users/clients, and the three clouds on the right hold the servers. Each server

belongs to one of the 99 different subnets (33 for each of the three server networks).

The capacity of the access link connecting each server to the rest of the network is

set to 15Mb/s by default. The requests for file downloads flow from left to right

(from clients to servers), and the actual files are sent back from right to left. In this

direction, the router has three ingress and one egress line, which means by increasing

the load we are able to create congestion on the link connection T640 router to the

client network.

In practice, the clients and servers are emulated by two different boxes: Spirent

Communications’ Avalanche box plays the role of clients, and the Reflector box plays

the role of servers (Figure 4.9). Each box has four Gigabit Ethernet Interfaces.

Obviously, we use only one interface from the Avalanche box, and three interfaces from

the Reflector box to connect the boxes to the T640 router. These links correspond

2We tried several other routers including Cisco GSR 12000, and Juniper M160. For the buffer
sizes we were interested in this experiment, Juniper T640 seemed to be the most suitable choice.

CHAPTER 4. BUFFER SIZING EXPERIMENTS 53

to core links, and the link connecting the router to the Avalanche box is the target

link. The access links are emulated by the Reflector box, which allows us to change

the access link capacity to any desired value.3 The delay associated with each access

link is also emulated by the Reflector box. Since all other link delays are negligible,

we can control the two-way propagation delay of packets by modifying these values.

Throughout the experiments, we use IPMon systems [2] to capture the headers

of all the packets which go through the links connecting the router to the Avalanche

and Reflector boxes. These headers are recorded along with high precision time-

stamps. By matching the packet traces on ingress and egress lines of the router,

we can measure the time each packet has spent inside the router, and thus, we can

calculate the time-series representing the queue occupancy of the router. This also

helps us identify any undocumented buffers inside the router. Such buffers could be

fixed-delay buffers (e.g. part of a pipeline, or staging buffers), or could be additional

FIFO queues.

4.2.1 Traffic Generator Evaluation

We evaluated the Avalanche/Reflector boxes to see if they generate accurate TCP

Reno traffic. We started with a single TCP flow, then changed several parameters

(link capacity, delay, congestion window size, packet drop rate, etc.) and manually

studied the generated traffic. We concluded that packet injection times are accurate,

except for a difference of up to 120µs (which can be attributed to processing times

and queueing delays in the traffic generators). We also compared the traffic patterns

generated by the Avalanche/Reflector boxes with patterns generated by the ns-2

simulator in carefully designed scenarios. While ns-2 is known to have problems of its

own, we wanted to identify differences between experimental results and simulation.

We found minor differences between ns-2 and Avalanche output traffic. However, we

believe these differences do not have any impact on buffer sizing experiments.4

3In the Internet, access links are slow on client side. We found out Avalanche does not enforce rate
limitations for incoming traffic, and had to push slow accesses to the server side in this experiment
so that we can emulate the impact of slow access links.

4These difference were reported to Spirent Communications, and some of them have been resolved
in their current systems. We are working with them to resolve the remaining issues.

CHAPTER 4. BUFFER SIZING EXPERIMENTS 54

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300 350 400
Time (sec)

Th
ro

ug
hp

ut
 (M

b/
s)

50 Pkts 63 Pkts 192 Pkts 922 Pkts 8500 Pkts

Figure 4.10: Throughput vs. time for various buffer sizes.

4.2.2 Experiment Results

In this section we study the impact of changing buffer sizes on network performance.

When allowed by our testing equipment, we also study the effect of changing some

other network properties (like traffic patterns, access link properties, number of flows,

and others) on buffer sizing results.

Performance as a function of buffer size

We reduce the buffer sizes on the router from 8500 packets to just 50 packets, and

measure the throughput, drop rate, and delay observed by individual packets as

performance metrics. At 1Gb/s line speed, and an RTT of 50ms, 8500 packets is

CHAPTER 4. BUFFER SIZING EXPERIMENTS 55

85

90

95

100

50 63 192 922 1017 8500
Buffer Size (Packets)

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

%
)

950

902.

855

807.

A
verage Throughput (M

b/s)

Figure 4.11: Average throughput vs. buffer size.

about twice the bandwidth-delay product, and 50 packets lies in the range of the tiny

buffer sizing model. In this experiment we increase the number of users from 0 to 600

during a period of 50 seconds, and keep the number of users at 600 for 5 minutes,

measuring throughput, delay, and drop rate during this time interval. The number

600 of users is chosen so that the effective load of the system is about 100%. Each

user downloads a 1MB file from an ftp server. Once the file download is completed

the user immediately starts downloading another file. The average RTT of the system

is 50ms (more precisely 15 + U [0, 20] on each of the forward and reverse paths), and

the capacity of access links connecting servers to the system is 15Mb/s. Both the

server and clients have an advertised congestion window size of 16KB.

Figure 4.10 illustrates throughput as a function of time for various buffer sizes,

CHAPTER 4. BUFFER SIZING EXPERIMENTS 56

0

1

2

3

4

5

6

50 63 192 922 1017 8500
Buffer Size (Packets)

D
el

ay
 (M

illi
se

co
nd

)

Figure 4.12: Delay statistics vs. the buffer size. The red square represents the average
delay and the bar represents the standard deviation.

and Figure 4.11 represents the average throughput for different buffer sizes. If we

consider the overhead of packet headers, the maximum throughput we can get is

about 950Mb/s. We can see that a buffer size between 8500 and 922 packets, gives a

throughput of about 100%. This is the range between the rule-of-thumb and the small

buffer model. When we push the buffer size to 192, 63, and 50 packets, which is in

the range of tiny buffers model, the throughput goes down by 10%, as predicted the-

oretically. The average level of throughput is maintained very smoothly throughout

the experiments, as seen in Figure 4.10.

The other metrics which we consider here in order to measure the performance

of the network are the delay statistics of packets going through the router, and the

CHAPTER 4. BUFFER SIZING EXPERIMENTS 57

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 63 192 922 1017 8500
Buffer Size (Packets)

D
ro

p
R

at
e

(%
)

Figure 4.13: Drop rate vs. buffer size.

packet drop rate. Figure 4.12 shows that on average packets go through a delay of

155µs to 4.5ms (equivalent to 13 and 375 packets) for buffer sizes between 50 and

8500 packets. The average packet delay is considerably smaller than the maximum

buffer size when it is set to 8500 packets. This is very similar to what we observed in

Level 3 Communications’ network.

The average delay increases as the buffer size is increased from 50 to 1017 packets,

and is slightly reduced for 8500 packets. Since the packet drop rate is close to zero

when buffer size is set to 1017 or 8500 packets, we expect these two to have similar

average delays, and the observed reduction in average delay might be a result of

activation/deactivation of some hidden buffer inside the router.

For buffer sizes between 922 and 8500 packets, the drop rate is very close to zero

CHAPTER 4. BUFFER SIZING EXPERIMENTS 58

(Figure 4.12). As expected, in these cases utilization is close to 100%. For smaller

buffers we see a packet drop rate of up to 0.75%; only 0.25% more than a M/D/1

queue of similar size and arrival rate, confirming once more the smoothness of traffic

going through the router.

The impact of increasing network load

In the previous experiment, parameters were chosen so that the effective system load

is very close to 100%. What happens if we keep increasing the load? Does the

throughput of the network collapse as a result of congestion? This is a valid concern,

and to find out the answer, we performed another set of experiments. This time, we

varied the potential load of the system between 25% and 150%. The potential load

of the system is defined as the utilization achieved when the bottleneck link capacity

is increased to infinity, and when the throughput is limited by other factors (like the

maximum congestion window size, RTT, and the access link capacities). We control

the system load by limiting the access link rates, and advertised congestion window,

and by changing the number of end users from 150 to 1200.

Figure 4.14 plots the throughput of the system as a function of load and various

buffer sizes in this scenario. For any given buffer size increasing the potential load

monotonically increases the throughput. For large buffers, the throughput reaches

100% (950Mb/s) when the potential load is 100%, and remains at that level for

increased potential load. For smaller buffers, the throughput reaches 90%-95% as we

increase the potential load from 25% to 100%, and remains almost fixed beyond that

point. This is good news in the sense that we do not see a collapse in throughput as

a result of increased congestion. For a core network a potential load beyond 100% is

very unlikely given that core networks are usually highly over-provisioned.

Performance as a function of the number of flows

We would like to see whether the number of flows affects the performance of the

system. We cannot simply modify the number of flows, since the potential load to

the system changes with the number of flows. To fix this problem we adjust the

CHAPTER 4. BUFFER SIZING EXPERIMENTS 59

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140
Potential Load (%)

Th
ro

ug
hp

ut
 (M

b/
s)

50 Pkts 63 Pkts 85 Pkts 192 Pkts 922 Pkts
1017 Pkts 8500 Pkts

Figure 4.14: Throughput vs. potential load for different buffer sizes.

maximum congestion window size based on the number of flows in order to keep

the potential load fixed. For 150 flows, the maximum congestion window size is set

to 64KB. As we increase the number of flows to 300, 600, and 1200, we reduce the

maximum congestion window size accordingly (to 32KB, 16KB, and 8KB). The buffer

size is set to 85 packets in all these experiments.

Figure 4.15 illustrates the changes in network throughput as we increase the num-

ber of flows, and Table 4.1 summarizes the average throughput (in Mb/s) for various

flow numbers and advertised congestion window sizes. When the number of flows is

very low (i.e. 150-300) the system throughput is significantly less than 100%. Even

when we increase the congestion window size (to increase the potential load), the sys-

tem throughput is not significantly increased. This can be explained by tiny buffer

CHAPTER 4. BUFFER SIZING EXPERIMENTS 60

Congestion window 150 flows 300 flows 600 flows 1200 flows 4800 flows

1 - - - - 0.1
2 - - - - 764.9
4 - - - 548.0 818.7
8 - - 651.0 876.9 -
16 - 596.3 868.8 893.7 -
32 492.7 752.8 879.5 - -
64 558.3 742.0 - - -
128 522.8 - - - -

Table 4.1: Throughput (Mb/s) as a function of advertised congestion window size
and number of flows.

sizing model as follows: when the number of flows is low, we will not have a natu-

ral pacing as a result of multiplexing, and therefore, the throughput will not reach

100%.5 When the number of flows is large (i.e. 600-1200), the system throughput

easily reaches 90-95%, independent of the number of flows.

Increasing the number of flows beyond a few thousand can result in a significant

reduction in throughput, as average the congestion window size becomes be very small

(2-3 packets or even less), resulting in a very high drop rate and poor performance [37,

17]. This problem is not associated with tiny buffers, and unless we significantly

increase the buffer sizes even more than the rule-of-thumb it would not be resolved.

We believe this is a result of poor network design and increasing the buffer sizes is

not the right way to address such issues.

Flow sizes

So far we have only considered users that download a 1MB fixed size file, which

means all the flows are of the same length. To find out the impact of having flows

of different sizes, we performed a set of experiments with several download patterns:

fixed file sizes of 10KB, 100KB, and 1MB; uniformly random file size between 10KB

and 500KB; and file sizes with a heavy-tailed distribution with parameters α = 2 and

5This problem can be fixed by modifying traffic sources to use Paced TCP. Here, we do not have
the tools to test this. The commercial traffic generator which we use, does not support Paced TCP.

CHAPTER 4. BUFFER SIZING EXPERIMENTS 61

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200
Number of Flows

Th
ro

ug
hp

ut
 (%

)

Figure 4.15: Throughput vs. the number of flows.

K = 10. In all these experiments the buffer size is set to 85 packets, and we emulate

600 users.

Table 4.2 summarizes the results and shows throughput and packet drop rates for

different file size download patterns. We observe that regardless of file size distribution

the drop rate is always below 1%, and the throughput remains above 74%. It is

interesting to note that in patterns which have a lot of small flows, (10KB or heavy-

tailed for example) we see more packet drops and lower link utilizations. Small flows

spend the majority of their time in slow-start phase, during which packet injections

are very bursty (due to sudden increases in the congestion window size). Large flows

however, spend most of their time in congestion avoidance phase, during which the

congestion window size changes much more slowly. A traffic pattern with a lot of

CHAPTER 4. BUFFER SIZING EXPERIMENTS 62

Flow Size Throughput Packet Drop Rate

10KB 74% 0.94%
100KB 82% 0.63%
1MB 91% 0.49%

Uniform 85% 0.21%
Heavy-tailed 80% 0.54%

Table 4.2: Drop rate vs. file size

small flows therefore, is more bursty; which means it will see more packet drops and

less throughput compared to a traffic pattern with large flow sizes when the buffers

are tiny.

Dependence on access link properties

The tiny buffer sizing model relies on natural pacing of flows which happens as a result

of the difference between capacities of access links and core links in the network. Such

difference between core and access link rates exists in today’s network. A typical home

user today, has an access link capacity of 56Kb to a few Mb. When the access links are

very fast, the validity of tiny buffer sizing model depends on the heavy multiplexing

of individual flows, or having sources which pace their injection, e.g. Paced TCP

sources.

For the case where we rely on the disparity of the core and access link rates, a

natural question is how slow the access links need to be in order to cause pacing

needed for tiny buffer model? In order to answer this question, we performed a series

of experiments in which the capacity of access links is set to 1Mb/s, 4Mb/s, 16Mb/s,

64Mb/s, and ∞. We increase the number of users from zero to 600, and measure the

network throughput. The buffer size is 85 packets, and the average RTT is 50ms.

Figure 4.16 depicts the throughput of the system over time. When the access

link capacity is very small (i.e. 1Mb/s and 4Mb/s), the system throughput remains

low. This is because flows are throttled by access links, and the throughput cannot

reach 100% even if we increase the buffer size. When the access link capacity reaches

16Mb/s we see the maximum throughput over time (93-94% on average). As we keep

CHAPTER 4. BUFFER SIZING EXPERIMENTS 63

0

100

200

300

400

500

600

700

800

900

1000

0 12 24 36 48 60 72 84 96 108 120

Time (sec)

T
hr

ou
gh

pu
t (

M
b/

s)

1Mb/s 4Mb/s 16Mb/s 64Mb/s Infinity

Figure 4.16: Throughput vs. access link capacity.

increasing the capacity of access links, the throughput slightly decreases to about

90%. This reduction happens because the natural pacing of flows vanishes as we

increase the access link capacity. Because of the heavy multiplexing of individual

flows, we still have a reasonably high throughput even when the access link capacities

are very high. A test with fewer flows and with high access link capacities can result

in significant reductions in throughput, as seen in Section 4.2.2.

Another property of access links that might impact the behaviors we have observed

so far is the RTT associated with individual flows. To study this, we performed

another experiment with four different link delay patterns:

1. 5+U[0,40] milliseconds forward, same reverse path

2. 20+U[0,10] milliseconds

CHAPTER 4. BUFFER SIZING EXPERIMENTS 64

0

100

200

300

400

500

600

700

800

900

1000

0 12 24 36 48 60 72 84 96 108

Time (sec)

T
hr

ou
gh

pu
t (

M
b/

s)

Delay Pattern 1 Delay Pattern 2 Delay Pattern 3 Delay Pattern 4

Figure 4.17: Throughput vs. delay pattern.

3. 25 milliseconds

4. 40+ U[0,20] milliseconds

Figure 4.17 depicts the throughput of the system over time for these link delay

patterns. Other than the fourth pattern, modifying the RTTs does not have a signif-

icant impact on system throughput. In the case of the 4th pattern, we should note

that we have effectively doubled the RTTs in this case, and that is why we see a

significant reduction in throughput.

For patterns 1 to 3, even though the average RTT is fixed, the harmonic average

is increased from pattern 1 to 3. Since the throughput is inversely proportional to the

harmonic average of RTTs the overall throughput is slightly decreased in this case.

However, these changes in throughput are not significant, and are similar to what

CHAPTER 4. BUFFER SIZING EXPERIMENTS 65

happens when buffers are large.

4.2.3 Hidden Buffers

Using commercial routers for buffer sizing experiments is difficult. Generally, we do

not know the internal architecture of the router, or the location and exact size of

buffers. And the router does not always allow buffer sizes to be set precisely. For

example, in the Juniper T640 router which we used for Sprint ATL experiments,

setting the buffer size to 1ms should result in a buffer which holds 83 packets at

the given line rate of 1Gb/s. In reality, the buffer size is about 192 packets, which

is almost twice the value set. Interestingly, decreasing the buffer size below 10ms

significantly increases the actual delay observed by packets, presumably because of

the activation of a hidden buffer. We determined the actual buffering by capturing

traces of packets on ingress and egress lines of the router, along with high-precision

time-stamps. These traces can be used to find the delay each packet has had inside

the router, and hence the buffer size.

Any packet entering the router is either being processed in a pipeline, or sitting in

a queue. By removing a constant minimum packet processing time, we can measure

the delay observed by each packet. The maximum delay observed by any packet is

considered to be the actual buffer size,6 and by removing the minimum constant delay

observed by all packets, we can find a good approximation of the buffer size.

All the buffer size values reported in Section 4.2 are based on measurements.

4.2.4 Other Tiny Buffer Experiments

The tiny buffer experiments have been independently performed by research groups

at Lucent Technologies, and Verizon Communications, and they have found similar

results. Other experiments have also considered some other scenarios like the impact

of failures, cascading, and other traffic types like http and streaming protocols. The

only operational network experiment we have done is performed in collaboration with

6The buffer size of 100ms is an exception here, since the buffer never becomes full. In this case,
we estimate the actual buffer size based on the nominal value.

CHAPTER 4. BUFFER SIZING EXPERIMENTS 66

Internet2. We reduced the buffer size of a core router down to 50 packets, while mea-

suring the performance through active flow injections, and passive monitoring tools.

Our measurements of throughput and packet drops did not show any degradation.

We note that Internet2 operates its network at very low utilization (20-30%) – not

an ideal setup for buffer sizing experiments. For more details on these experiments,

we refer the reader to the extended version of this paper [25].

4.3 Summary

The small buffers rule appears to hold in laboratory and operational backbone net-

works – subject to the limited number of scenarios we can create. We are sufficiently

confident in the small buffers result to conclude that it is probably time, and safe, to

reduce buffers in backbone routers, at least for the sake of experimenting more in a

fully operational backbone network. The tiny buffer size experiments are also consis-

tent with the theory. However, we suspect that there are many more scenarios and

boundary cases to consider before deciding whether it is time to reduce buffers to just

20-50 packets. In the mean time, more experiments are needed to better understand

these results.

Chapter 5

Tiny Buffers in Practice

In order to theoretically analyze or simulate any complex system, we need to discard

some details present in the real system. Buffer sizing is not an exception. In this

chapter, we will review some implicit simplifying assumptions that we have made

previously, and show how one can apply buffer sizing results in practice despite these

simplifications.1

Throughout this work, we have always assumed all routers and switches are output

queued (OQ). In an OQ switch, packets arriving at input ports of the switch, are

immediately transferred to the corresponding output port by the crossbar switching

fabric. Packets are queued in the output port before they can depart the switch. In an

N port switch, there might be as many as N packets destined to a given output port

at any given time; thus, the switching fabric must be able to simultaneously transfer

up to N packets from the input ports to a given output port. In other words, the

switching fabric must operate at N times the ingress/egress line rates, which is a very

restrictive requirement. In practice, most switches have buffers in both the input, and

output ports, and are called combined input-output queued (CIOQ) switches, and the

switching fabric operates at a rate which is usually within a 1-2 factor of the line rate.

In Section 5.1 we will show how we can apply the OQ switch based results to the

more realistic case of a CIOQ switch.

1Part of this work is done in collaboration with Neda Beheshti, Ramesh Rajaduray, Daniel
Blumenthal, and Nick McKeown [9, 8].

67

CHAPTER 5. TINY BUFFERS IN PRACTICE 68

In electronic switching devices, In electronic switching devices, we can randomly

access any memory location. This is not trivial in all-optical routers, since we do not

have random access memories. Using optical delay lines, a packet entering the delay

line needs to remain in there for a fixed duration of time before one can retrieve it. In

Section 5.2 we study the problem of how one can emulate FIFO queues using optical

delay lines. We show the feasibility of constructing a FIFO queue of size N by using

only O(log N) 2×2 switches. A simple scheduling algorithm that achieves this bound

is developed, and the tradeoff between the number of required 2× 2 switches and the

maximum delay line length is discussed. The proposed structure provides an efficient

way of storing optical packets using a minimal number of delay lines and switches.

5.1 Combined Input-Output Queued Switching

Throughout this work, we have always assumed all routers and switches are Output

Queued (OQ). In an OQ switch, packets arriving at input port of the switch, are

immediately transferred to the corresponding output port by the crossbar switching

fabric. Packets are queued in the output port before they can depart the switch. In an

N port switch, there might be as many as N packets destined to a given output port

at any given time; therefore, the switching crossbar must be able to simultaneously

transfer up to N packets from the input ports to a given output port. In other words,

the switch must operate at N times the ingress/egress line rates, or have a speedup

of N . This is a very restrictive requirement. In practice, the switching fabric in

most routers operates at a speed which is 1-2 times faster than the line rates [1], and

as a result routers have buffers in both the input, and output ports, and are called

Combined Input-Output Queued (CIOQ) switches.

A CIOQ switch with speedup of s, has s scheduling cycles per time slot. Once per

cycle, a scheduling policy determines which packets to transfer from the input ports

to the output ports. In a crossbar switch, the scheduling algorithm must resolve two

constraints per cycle: (1) at most one packet can be removed from each input port;

and (2) at most one packet can be delivered to each output port. In a switch with

N input/output ports, and with a speed up 1 < s < N , buffers are required at both

CHAPTER 5. TINY BUFFERS IN PRACTICE 69

input and output ports. Internet routers today commonly use virtual output queuing

(VOQ), in which an input linecard buffers packets which are destined for different

output linecards in separate FIFO queues.

In this section, we want to find out how big the buffer should be for a CIOQ router.

We show that in theory, a CIOQ switch needs no more buffers than an OQ switch, i.e.,

20-50 packets should suffice under the same constraints described in Chapter 3. Using

simulation, we explore how much buffer is needed when we use practical scheduling

algorithms.

5.1.1 Theoretical Bounds

In this section we show how the tiny buffers result for OQ routers can be generalized

to apply to a CIOQ router.

Definition 1. Consider two routers A and B, and assume the same input traffic is fed

to both routers. B is said to exactly emulate A if packets depart at the same time from

both routers.

At a given time t, let us denote the total number of packets buffered in a router

A which are destined to output port j with QA(j, t). Clearly, for an OQ router A,

QA(j, t) is the occupancy of the output queue j at time t.

Lemma 1. Let us consider a CIOQ router B which exactly emulates an OQ router A.

At any point of time t, we have

QB(j, t) ≤ QA(j, t).

Proof. Let us assume the contrary. There must be a time t, and an output port j

such that QB(j, t) > QA(j, t). Now, let us call the last packet which has entered the

system P . Since A is an OQ switch, it will serve P in exactly QA(j, t) time slots.

There are more packets than QA(j, t) buffered in router B, and they need to be served

in QA(j, t) time slots (since B exactly emulates A), a contradiction.

Based on this lemma if we can find a way of emulating an OQ router with a CIOQ

one, we can apply the tiny buffers results and prove that the CIOQ router needs tiny

CHAPTER 5. TINY BUFFERS IN PRACTICE 70

buffers in order to gain very high throughput under the constraints mentioned before.

Interestingly, Chuang et al. have shown that a CIOQ switch can emulate an OQ

switch using a specific scheduling algorithm called the stable marriage scheduling

and with a speedup of two [15]. Combining this result with Lemma 1, and the tiny

buffers results we can prove the following theorem.

Theorem 3. There is a scheduling algorithm, which can guarantee a high throughput

(for instance, above 80% of link capacity) in a CIOQ router with very small buffers (20-50

packets) under the constraints stated in Chapter 3 and with a speedup of two.

Theorem 3 shows the possibility of building a CIOQ router with very small buffers

using the stable marriage scheduling algorithm. This algorithm is somewhat complex

for implementation, and therefore it might be a good idea to take a look into simpler

algorithms. We note that, even though in the above theorem we exactly emulate

an OQ router with a CIOQ router, in practice exact emulation is not needed. If a

CIOQ router can roughly emulate an OQ router we might still be able to use the

same arguments as above to show the possibility of having realistic routers with tiny

buffers. In what follows, we study the performance of a CIOQ packet switch with a

speedup of 2, and a relatively simple scheduling algorithm.

5.1.2 Simulation Results

We enhanced ns-2 [4] to include accurate router models with CIOQ switching. The

simulated topology is depicted in Figure 5.1. The router has 32 input and output

ports; where each input port carries 500 multiplexed TCP Reno flows. Flows are

generated at separate source nodes on slow access links, then multiplexed together

onto the backbone. The backbone link capacity is 40Gb/s. The multiplexer buffers

are sufficiently large to avoid any losses other than possible ones at the input or output

ports of the router. The data packet size is 1000 bytes for all flows. Packets arriving

at the switch linecards are segmented into fixed size cells, then reassembled before

they depart. The router has speedup of two; in each cycle a scheduling algorithm [43]

removes either zero or one cell from every input port and sends it to the corresponding

output. If a contention exists among input ports, i.e., if there are more than one

CHAPTER 5. TINY BUFFERS IN PRACTICE 71

Multiplexer

Switch

VOQ(1,1)

VOQ(1,4)

VOQ(32,1)

VOQ(32,4)

32x32

Switch

Group 1

Group 4

Input 1

Input 32

Output 1

Output 8

Output 25

Output 32

 TCP
Sources

 TCP
Sinks

(a)

(b)

Figure 5.1: Topology of the switch used in ns-2 simulations.

input ports requesting connection to a single output port, then the ports which are

less recently served take priority over others. The same criterion holds if there is a

contention among output ports; priority is given to less recently served output ports.

The output traffic is distributed uniformly among different channels of each output

port.

Output ports of the switch are divided into 4 groups of 8 optical channels. All the

channels in a group carry traffic to one destination. The generated traffic consists of

long-lived TCP flows with an average RTT of 40ms. Different RTTs are modeled by

adding random jitter to the propagation delay of the access links.

To find out how much buffering is needed at input and output ports, we first

assume that the size of buffers at the input side is unlimited. Simulation results show

CHAPTER 5. TINY BUFFERS IN PRACTICE 72

0 20 40 60 80 100 120 140 160 180 200
55

60

65

70

75

80

85

90

95
Li

nk
 U

til
iz

at
io

n(
%

)

Output Buffer Size per Port [packets]

Access Link Capacity = 2 Gb/s
Access Link Capacity = 40 Gb/s

Figure 5.2: Throughput of a CIOQ switch as a function of buffer size.

that the tail probability of queue occupancy at input ports is a non-decreasing func-

tion of the output buffer size. But even with output buffers of size 1000 packets, the

VOQ occupancy does not exceed 2 packets in the duration of simulation. Therefore

in the next set of simulations we assume that the size of input queues is only 2 packets

per VOQ, and investigate the appropriate size of the output queues.

The amount of buffering needed in a router depends on how bursty the TCP traffic

is. As argued in Chapter 3, when the access links have limited capacity compared to

the core links, the router finds the arrival traffic less bursty and this reduces the size

of buffers needed for achieving high throughput. Figure 5.2 shows how link utilization

varies as the size of output buffer increases considering two scenarios: 1) Access links

CHAPTER 5. TINY BUFFERS IN PRACTICE 73

0 5 10 15 20 25 30 35 40
70

75

80

85

90

95
Li

nk
 U

til
iz

at
io

n(
%

)

Access Link Capacity (Gb/s)

Output Buffer Size = 100 packets / port
Output Buffer Size = 40 packets / port

Figure 5.3: Throughput of a CIOQ switch as a function of access link capacity.

have the same capacity as the core links, and 2) Capacity of each access link is 2Gb/s,

i.e., 5% of the core link capacity. In both cases the maximum offered load to output

ports is set to one. That is when each flow is sending at its maximum window size,

the traffic destined for each output port is equal to the link capacity. The plot shows

that with slow access links, we need only five packet buffers per output port to achieve

80% utilization. We would need about 100 packets if the access links run at the same

speed as the backbone. In both cases, the input buffer size is two packets per VOQ.

Figure 5.3 depicts the throughput of the system as the access link capacity varies.

Here, the capacity of the core links is kept fix at 40Gb/s, and the maximum offered

load to the output links is set to one. It can be seen that as we increase the access link

capacity, the throughput decreases. As mentioned before, this is because of losing the

CHAPTER 5. TINY BUFFERS IN PRACTICE 74

natural spacing between packets by increasing the capacity of access links.

In all the above simulations the number of flows multiplexed on input ports is

assumed to be 500. This number is bounded above due to the memory constraints

of the ns-2 simulator. In practice however, this number is typically much larger in

the core of the Internet. An OC192 link for example, can carry up to 30,000 flows

at a time. Larger number of flows make the traffic smoother and achieve a higher

throughput. The simulation results therefore, provide a lower bound on the expected

throughput of a network with tens of thousands of flows.

5.2 All-optical FIFO Queue Using Delay Lines

In electronic switching devices, we can randomly access any memory location. This

is not trivial in all-optical switches. In fact, one of the main stumbling blocks to the

rapid deployment of all-optical networks is the lack of optical FIFO buffers. The best

solution which has been proposed for the optical buffering problem is to use optical

delay lines in order to delay packets for a certain amount of time. Even though this

is not as good as having a random access memory (like what we have in electronic

networks), it can solve the buffering problem to some extent. Now, the question is

whether we can emulate arbitrary queueing schemes, like FIFO, using optical delay

lines. This is the problem we will address in this section.

Figures 5.4 (a) and (b) show how we can use a single optical delay line (or a fiber

delay line) and a 2 × 2 optical switch to create a simple optical buffering element.

Upon the arrival of a packet to the buffer, the switch must be in the crossed state

(shown in Figure 5.4 (a)), directing the packet to the optical delay line. The length

of the optical delay line must be large enough to hold the entire packet. Once the

packet is completely on the optical delay line, the switch changes to the parallel state

(shown in Figure 5.4 (b)). This will form a loop in which the packet will circulate.2

When a packet is about to leave the buffer, the switch is changed back to the cross

state and stays in that state until the packet leaves system.

2The packet can circulate in the buffer for a limited number of times due to the attenuation of
the optical signal power.

CHAPTER 5. TINY BUFFERS IN PRACTICE 75

(a) (b)

(c)

Figure 5.4: Building all-optical buffers from optical delay lines.

We can create an all-optical buffer of arbitrary size by using a series of optical

buffering elements, as shown in Figure 5.4 (c). In order to store N packets, we need

to have N optical delay lines, and N switches of size 2 × 2. Each packet is stored

in the rightmost delay line which is not full. Upon departure of a given packet, all

other packets are shifted to the right. Given the complexity of building switches in

optics, this architecture – despite being relatively simple – might not be practical, as

the number of 2× 2 switches grows linearly with the number of packets that need to

be stored.

There has been a considerable amount of work on emulating optical queues and

multiplexers using optical delay lines and optical switches [27, 13, 46, 14, 16]. In a

FIFO multiplexer the departure time of packets is known upon their arrival, whereas

in a FIFO queue, the departure time can not be determined in advance. Sarwate and

Anantharam proposed an architecture for emulating any priority queue of length N ,

in which the number of delay lines is O(
√

N) [46]. These delay lines are all connected

CHAPTER 5. TINY BUFFERS IN PRACTICE 76

2

1

K-1

K

2

1

K-1

K

D1

D2

DK-1

Figure 5.5: General architecture for building all-optical buffers from optical delay
lines and switches.

to a K × K switch (K = 2 log N), as shown in Figure 5.5. This switch transfers

packets from a given delay line to the same delay line or any other one. A scheduling

algorithm controls the state of the switch at each point of time.

Sarwate and Anantharam also proved that we need at least O(log N) delay lines

for this problem. Recently, C.S. Chang et al. proposed a 3 stage design which achieves

the O(log N) lower bound through recursive expansion of the same construction [13].

Here, we present a similar result which was devised independently, and is somewhat

simpler in the sense that it does not need to keep track of the longest and the shortest

delay lines in each step of the recursion. Our scheduling algorithm can be implemented

in a distributed manner, as long as we notify individual units of the arrival and

departure requests to the system.

5.2.1 Preliminaries and Assumptions

We consider the architecture depicted in Figure 5.5 as a starting point. Incoming

packets arrive at input K of the switch, and departing packets leave the switch from

the output line K.

CHAPTER 5. TINY BUFFERS IN PRACTICE 77

We assume all packets are of fixed size, that time is slotted, and the length of a

time slot is the time needed for a packet to enter (leave) an optical delay line. At each

time slot, the system receives at most one arrival request and one departure request.

The sequence of arrivals and departures is not known in advance.

The length of a delay line – assumed to be an integer – is the total number of

back to back packets which the delay line can hold. If we have a delay line of length

L it takes L + 1 time slots for a packet from the time it starts entering the delay line

to the time it has completely left the delay line.

The state of the switch is controlled by a scheduling algorithm, and changes right

at the beginning of each time slot. Depending on the state of the switch, a packet at

the head of a given delay line is either transferred to the tail of the same delay line,

to a different delay line, or to the output port of the switch.

We define the order of a given packet P as the total number of packets in the

system (i.e. not including packets which have departed) which have an arrival time

before P . In a FIFO queueing system, the order of each packet is decremented by

one after each departure.

5.2.2 Emulating FIFO with O(log N) Switches

In this section we present a buffering architecture consisting of O(log N) optical delay

lines that can emulate a FIFO queueing system, i.e., if we apply the same sequence of

arrival and departures requests to both systems, the corresponding output and drop

sequences are the same.

Let us consider the structure depicted in Figure 5.6, where D1, ..., Dlog N are delay

lines, and W is a waiting line; as defined later. We note that the K × K switch in

Figure 5.5 has been replaced by a number of 2× 2 switches here. The length of delay

line Di is Li = 2i−1; making the aggregate length of delay lines {Di} equal to N − 1.

Incoming packets are buffered by going through a number of these optical lines.

As time progresses, optical packets in each delay line move in the direction shown

in Figure 5.6 towards the head of delay lines. At the end of each time slot, a scheduler

determines the next position of the head of line packets. The system directs these

CHAPTER 5. TINY BUFFERS IN PRACTICE 78

12

3

4

5

6

7

Delay Lines

Packet Propagation

Arrivals Departures

Waiting Line

W

D1

D2

D3

DlogN

Figure 5.6: Emulating a FIFO queue using delay lines. The system regulates the
position of the arrived packets by passing them through a waiting line.

head of line packets towards their scheduled positions by configuring the 2×2 switches

corresponding to each delay line. The scheduler also checks whether there is any

arrival or departure requests. Upon a departure request, the packet of order 1 will

be scheduled to leave the system at next time slot. Upon an arrival request, the

scheduler decides if the arriving packet needs to go through the waiting line first, or

if it can be directly delivered to one of the delay lines.

The waiting line W operates as a regulator of the arriving packets. Since the time

distance between successive arriving packets is not known in advance, the system

uses this waiting line to adjust the location of packets in delay lines. W has a FIFO

structure, with the property that the departure time of each packet that is placed in

it, is known upon its arrival. In what follows we first show that this structure along

with our proposed algorithm can emulate a FIFO queue of length N − 1. We then

show that the waiting line W can itself be constructed by log N − 1 delay lines. This

CHAPTER 5. TINY BUFFERS IN PRACTICE 79

makes the total number of required delay lines equal to 2 log N − 1.

Algorithm A describes the scheduling procedure in details. The main idea of the

scheduling algorithm is to place the packets in delay lines consecutively, i.e., packets

with successive departing order are placed back to back in delay lines. This is in

contrast with what is proposed in [46], where arriving packets are allowed to fill out

any available positions at the tail of delay lines. Clearly it might occur that a packet

arrives at the system, while its preceding packet is in the middle of some delay line.

In these cases, the system keeps the arrived packet in W for a proper number of time

slots before directing it to one of the delay lines. This waiting time is equal to the

time it takes for the preceding packet to traverse the delay line it is currently in,

and gets switched to a tail position. During the waiting time, all the arrived packets

are kept in W in a FIFO order. We say the waiting line W is idle if there are some

packets in it, but there is no departures from it due to the scheduling algorithm’s

waiting policy.

At a departure request incident, if the system is non-empty, the packet with

departing order 1 is delivered to the output link. Our scheduling algorithm guarantees

that this packet is always at the head of some delay line. The departing order of every

remaining packet in the system is then reduced by one.

At the end of each time slot, the next position of the head of line packets is

determined by the scheduler. The scheduler decides whether to recirculate a packet

in the same delay line it is currently in, or to send it to a shorter delay line. This

decision is made independently for each head-of-line packet, based only on the packet’s

departing order as follows: in the next time slot, the packet will be transferred to the

tail position of the longest delay line whose length is not greater than the order of

the packet. More precisely, if the head-of-line packet has departing order m, then it

will be placed in delay line Ddlog me. As will be shown later, this ensures that packets

are at the head of some delay line when their departing order goes down to 1.

The same scheduling policy applies when the waiting time of a packet in W goes

to zero: the packet will be transferred to the tail position of the longest delay line

whose length is not greater than the departing order of the packet.

Note that because there is no randomness in the scheduling algorithm, every

CHAPTER 5. TINY BUFFERS IN PRACTICE 80

Algorithm A- Packet Scheduling

1. Arrival Event

Let k be the total number of packets in the system.

if k = N then

drop the arrived packet

else

denote by pk+1 the arrived packet and by pk its prior packet in the system.
if pk is in W then

place pk+1 in W

else
waiting time← (d + 1) mod l, where l is the length of the delay line
which contains pk, and d is the distance of pk from the head of the line.
if waiting time > 0, place the arrived packet in W . Otherwise, place
it in the shortest queue with length greater than or equal to the order
of the packet.

2. Departure Event

Remove the packet with order 1 from the system, and decrease the order of all
packets in the system by 1.

3. Scheduling the Head of Line Packets

for i = 1, 2, ..., log N , move the packet at the head of Di to the shortest delay
line with length greater than or equal to the order of the packet.

if (waiting time > 0) then

waiting − time← waiting time− 1

if (waiting time = 0) & (W is nonempty) then

remove the head of line packet from W . Place the packet in the shortest
delay line with length greater than or equal to the order of the packet.

CHAPTER 5. TINY BUFFERS IN PRACTICE 81

switch can be scheduled separately, as long as the local scheduler is informed of every

arrival and departure event in the system. Based on this information, the scheduler

can keep track of the order of all packets going through its corresponding delay line.

Whenever the order of a packet at the head of the line is smaller than the length of the

delay line, it will be sent out from the line. Also because all the arrival information

is known at the local scheduler, at each time slot, the scheduler knows if there is a

packet destined for its delay line, and will keep the switch close to make the arriving

packet insert that link.

The following theorem states that the presented scheduling algorithm makes the

overall system behave exactly as a FIFO queue.

Theorem 4. A FIFO queue of size N can be emulated by O(log N) delay lines.

To prove this theorem, we show that if N = 2n for some n > 0, by exactly

2 log N − 1 delay lines, a FIFO of size N − 1 can be emulated. In the sequel, N is

assumed to be a power of 2, unless otherwise stated.

Lemma 2. The occupancy of W is less than or equal to N/2.

Proof. The maximum idle time of the non-empty W is equal to the length of the

longest delay line, which is N/2. When W goes to the non-idle mode, it stays in that

mode and sends out one packet in each time slot unless it gets empty. Therefore, the

occupancy never exceeds N/2.

The next step is to show that the scheduling of the head of line packets is con-

tention free, i.e., the scheduling algorithm guarantees that no more than one packet

would be switched into a single delay line. Assume that all the N − 1 locations in

delay lines are enumerated as shown in Figure 5.6. We say that at time slot t the

location of a packet P is l, if the packet is located in the line slot numbered l.

Lemma 3. There is no contention among head of delay line packets for a given delay

line.

The proof comes in Appendix C.

CHAPTER 5. TINY BUFFERS IN PRACTICE 82

Lemma 4. Packet with departure order 1 is always at the head of a delay line.

Proof. When a packet P with departure order k gets to the head of some delay line,

it will be scheduled to be placed in a delay line with length l ≤ k at the next time

slot. In other words, there will be at most k − 1 departures from the system before

packet P reaches the head of line again, and hence its departure order can not be 1

unless it is at a head of some delay line.

The above lemmas show that (1) an arriving packet will be buffered in the system

as long as the total number of packets in the system remains less than N , (2) the

scheduling algorithm relocates packets in such a way that there is no contention for a

given location. Moreover, any packet can get to the head of line before its departing

order drops to 1, and (3) the packets depart in the same order they arrive at the

system. This completes the proof of theorem 4.

5.2.3 Construction of the Waiting Line W

To avoid future contention, the scheduling policy of algorithm A does not allow any

void places between packets located in delay lines. To achieve this, an arriving packet

is kept in the waiting line until its preceding packet – in arriving order, or equally

in departing order – passes the tail of a delay line. In the following time slot, the

waiting packet will be placed in a line according to algorithm A.

Theorem 5. Waiting line W can be constructed by log(N) delay lines.

Consider a group of delay lines D′
i i = 1, 2, ..., log N − 1, where the length of the

delay lines grows as 1, 2, 4, ...2(logN)−2, generating an overall delay length of N − 1.

From algorithm A we know that: (1) the departure time of each packet from W is

known upon its arrival, and (2) waiting time of each packet in W is always less than

N/2.

Using the above facts, we develop algorithm B in the following way. When a

packet P arrives to the system, and is scheduled by algorithm A to be placed in W

then:

CHAPTER 5. TINY BUFFERS IN PRACTICE 83

1. Calculate the binary expansion of the waiting time of P , i.e., the duration that P

needs to wait in W before moving to one of the delay lines {Di}. This determines

which delay lines from the set {D′
i} the packet should traverse before leaving

W ; if the i-th bit in the binary representation is non-zero, then the packet needs

to traverse delay line D′
i.

2. Starting from the shortest line, when the packet reaches the end of a delay line,

place it in the next one corresponding to the next non-zero bit.

Packet P leaves W when it traverses all the delay lines corresponding to the non-

zero bits in its binary expansion. A waiting packet traverses any delay line of the set

{D′
i} at most once, and never recirculates in the same delay line.

Note that since the waiting time of each packet is known upon its arrival, the

sequence of switch states in the next time slots can be determined at the time each

packet arrives. Upon each arrival, this sequence is updated by the central scheduler.

Therefore, the switching decisions are not required to be made exactly when packets

arrive to the head of delay lines. More precisely, if a packet arrives at time t and the

binary representation of its waiting time is b(log N)−1...b2b1, then for each nonzero bit

bi the switch of line D′
i will be closed twice; at time t +

∑i−1
j=0 bj2

j, to let the packet

enter the delay line, and after the packet traverses the line, at time t +
∑i

j=0 bj2
j to

let it go to the next scheduled delay line.

Although the number of 2×2 switches in the proposed scheme is only 2 log N , the

total length of delay lines used for exact emulation is 1.5N . The suggested algorithm

needs this extra N/2 length of delay line to ensure that packets are all placed in delay

lines {Di} consecutively. As explained before, upon an arrival, if the prior packet is

in the middle of a delay line, the scheduler waits until the prior packet is switched

into the tail of some delay line. For this purpose, an extra length, equal to the length

of the longest delay line, is needed to construct the waiting line W . Therefore, by

reducing the length of the longest delay line, the extra length can be reduced too.

Figure 5.7 illustrates an example where the longest delay line is replaced by two

half-sized delay lines. Consequently, the size of the waiting time W can be halved,

resulting in only 0.25% extra length of fiber. This is in fact achieved at no expenses;

CHAPTER 5. TINY BUFFERS IN PRACTICE 84

12

3

4

5

6

7

Delay Lines
Packet Propagation

Arrivals Departures

Waiting Line

W

D1

D2

D3

DlogND(logN)+1

Figure 5.7: Trade-off between the number of delay lines and the maximum delay line
length.

although one switch, and hence one delay line is added to the set of delay lines {Di},
the size of W is halved, which means that one less switch is required for constructing

W . It is easy to see that by repeating this procedure k times, the total number of

switches added to the system would be 2k+1 − 2k − 2, while the extra fiber length

would be approximately 1
2k+1 that of the original scheme. By setting K = 2k, the

exact trade off can be stated as the following theorem.

Theorem 6. A FIFO queue of size N − 1, where N is a power of 2, can be emulated

by 2(log N + K − log K) − 3 delay lines with aggregate length of N − 1 + N−2K
2K

,

K = 20, 21, ..., 2(log N)−1.

CHAPTER 5. TINY BUFFERS IN PRACTICE 85

5.3 Summary

In this chapter, we studied two implicit assumptions in our buffer sizing analysis,

which are not necessarily realistic. The first assumption is that we have OQ routers.

Even though analyzing such routers is easier than CIOQ router, they are not easy

to build in practice. We showed how one can generalize buffer sizing results from

OQ to CIOQ routers. We also studied the problem of building all-optical buffers.

More specifically, we introduced a relatively simple architecture, which can be used

to emulate FIFO queues by using all-optical switches and optical delay lines. The

proposed structure, uses a simple mechanism to control the location of arriving optical

packets by using only O(log N) 2x2 optical switches. In other words, the buffering

capacity of the presented architecture grows exponentially with its size.

Chapter 6

Conclusion

In this dissertation, we have studied the problem of buffer sizing in Internet core

routers. Through theoretical analysis, simulations, and real network experiments, we

have examined the impact of small buffers and tiny buffers rules, which suggest two

to six orders of magnitude reduction in buffer sizes in Internet core routers.

For the small buffers rule, the underlying assumptions, and thus the predictions

appear to hold in laboratory and operational backbone networks – subject to the

limited number of scenarios we can create. We are sufficiently confident in the small

buffers result to conclude that it is probably time, and safe, to reduce buffers in

backbone routers, at least for the sake of experimenting more in a fully operational

backbone network.

In the tiny buffers context, our results suggest packet buffers in Internet core

routers can be made much smaller; perhaps as small as 20-50 packets, if we are

prepared to sacrifice some of the link capacity. It appears from simulation that the

buffer size dictates directly how much link capacity is lost, however congested the

network is. For example, a 40Gb/s link with 15 packet buffers could be considered to

operate like a 30Gb/s link. Of course, this loss in link capacity could be eliminated

by making the router run faster than the link-rate.

In a future network with abundant link capacity, this could be a very good trade-

off: use tiny buffers so that we can process packets optically. In the past, it was

86

CHAPTER 6. CONCLUSION 87

reasonable to assume that packet buffers were cheap, while long-haul links were ex-

pensive and needed to be fully utilized. Today, fast, large packet buffers are relatively

painful to design and deploy; whereas link capacity is plentiful and it is common for

links to operate well below capacity. This is even more so in an all-optical network

where packet buffers are extremely costly and capacity is abundant.

The buffer size we propose depends on the maximum window size. Today, default

settings in operating systems limit window size, but this limitation will probably

go away over time. However, even if the maximum window size were to increase

exponentially with time according to some form of “Moore’s law”, the buffer size

would only need to increase linearly with time, which is a very benign scaling given

recent technology trends.

Our results also assume that packets are sufficiently spaced out to avoid heavy

bursts from one flow. Again, slow access links help make this happen. But if this is

not true - for example, when two supercomputers communicate - the TCP senders

can be modified to use Paced TCP instead.

The underlying assumptions in the tiny buffer size rule are more restrictive com-

pared to the small buffers rule and might not hold in all Internet core networks. Our

limited experiments in laboratories show as long as the theoretical constraints (i.e.

non-bursty traffic as a result of pacing or slow access links) are valid tiny buffers result

hold. However, we suspect that there are many more scenarios and boundary cases

to consider before deciding whether it is time to reduce buffers to just 20-50 packets.

In the mean time, more experiments are needed to better understand these results.

One of the major problems we encountered in buffer sizing experiments is that

commercial routers do not allow buffer size adjustments with high accuracy, and are

not able to provide precise buffer occupancy information. A simple way to address

these issues in the future is to use NetFPGA-based 4x1GE routers [3]. The buffer

sizes in these router can be adjusted with high accuracy at the packet or byte level.

The router has the capability to collect accurate buffer occupancy data by recording

every time a packet is written to and read from the buffer memory. None of the

routers we know have these features, which are essential for buffer sizing, and we

highly advise adding such features to future routers.

Appendix A

Proof of the Tiny Buffers Main

Theorem

We will use the topology of Figure A.1. The capacity of the shared link (v, w), which

is denoted by C, is assumed to be at least (1/ρ) · NWmax/RTT where ρ is some

constant less than 1. Hence, the network is over-provisioned by a factor of 1/ρ, i.e.

the peak throughput is ρC. The effective utilization, θ, is defined as the achieved

throughput divided by ρC. We also assume that node v is an output queued switch,

and has a buffer size of B.

The flow going through the link (v, w) is the superposition of the N long-lived

TCP flows. Since the packet injection rate of the i-th flow is Wi(t)/RTT, its flow

injection is dominated by a Poisson process of rate Wmax/RTT. More specifically,

we can consider a virtual system in which flow i has an injection process which is

Poisson and of rate Wmax/RTT. We can couple the packet injection processes in the

real system and this virtual system such that the packets injected by the real system

are a subset of the packets injected by the virtual system. Therefore, the aggregate

of the N flows is dominated by a Poisson process of rate NWmax/RTT.

Now, let us consider the output queue at node v. We assume this is a drop-tail

queue, and prove the following lemma.

Lemma 5. The number of packet drops in the real system is less than or equal to the

number of packet drops in the virtual system.

88

APPENDIX A. PROOF OF THE TINY BUFFERS MAIN THEOREM 89

C

1s 1d

2d

Nd

2s

sN

v w

Figure A.1: Simplified topology of the network used in analysis.

At a given point of time t, let us denote the residual amount of data (queue

occupancy plus part of the packet being served which has not left the system yet)

in the real system with QR(t) and the amount of data residing in the virtual system

with QV (t). We also denote the accumulative number of packet drops for the real

system by DR(t) and the number of packet drops for the virtual system by DV (t).

We claim that for any time t,

[QR(t)−QV (t)]+ ≤ (DV (t)−DR(t)). (A.1)

Clearly this is true when both queues are empty at the beginning. Now we consider

the following cases:

1. If we have no arrival and just time passes, the right hand side does not change,

while the left hand side can only decrease or remain the same. This case also

includes when packets depart either system.

2. If we have arrivals or drops at both queues at the same time, the inequality still

holds.

3. If we have an arrival to the virtual system, and no arrivals to the real system no

matter if we have a drop or not, the LHS doesn’t increase, and the RHS might

increase, which means the inequality still holds.

4. If we have an arrival to both of the queues and the real system drops the packet

but the virtual system doesn’t, we consider two cases. If [QR(t)−QV (t)]+ >= 1,

APPENDIX A. PROOF OF THE TINY BUFFERS MAIN THEOREM 90

then both sides go down by one unit. Otherwise, since the real system drops the

packet but the virtual one doesn’t, we can conclude that QR(t) > QV (t) (t is

the time right before this last arrival), which means [QR(t)−QV (t)]+ is strictly

greater than zero, and therefore DV (t) is greater than DR(t). Now, after the

arrival and the drop, the LHS will become zero, while the RHS is greater than

or equal to zero.

In all cases the inequality holds. Now, since [QR(t) − QV (t)]+ is greater than or

equal to zero (by definition), our inequality is translated to DV (t) >= DR(t).

So far we have shown that the number of packet drops in the virtual system is more

than the number of packet drops in the real system. The next step is to bound the

number of drops in the virtual system. In this system the arrival process is Poisson.

If we assume that the packets are all of the same size, the service time will be fixed.

Therefore, we have an M/D/1 queue with a service rate of C, and arrival rate of ρC.

Lemma 6. The drop probability of the virtual system is bounded above by ρB.

The queue occupancy distribution of an M/D/1 FCFS queueing system is equal to

that of an M/D/1 LCFS-PR (last-come first-served with preemptive resume) queue.

This is because both queues have the same arrival process, are work conserving, and

have the same service rate. Now, for any M/G/1 LCFS-PR system the steady state

queue occupancy distribution is geometric with parameter ρ. Therefore, the drop

probability of the M/G/1 LCFS-PR system equals ρB, which is an upper bound on

the drop probability of the virtual system.

Note that this is not necessarily an upper bound on the packet drop probability

of the real system.

Now that we have an upper bound on the packet loss probability of the virtual

system, the next step is to find a lower bound on the throughput of the real system.

Without loss of generality, we consider the dynamics of one of the flows, say flow

number one. For simplicity, we assume that flow one is in congestion avoidance, i.e.,

during each RTT the congestion window size is incremented by one if there is no

packet loss, and the congestion window goes to zero if a packet loss is detected by

APPENDIX A. PROOF OF THE TINY BUFFERS MAIN THEOREM 91

the source. Once the congestion window size reaches its maximum value (i.e. Wmax)

it will remain fixed.

Time

C
on

ge
st

io
n

W
in

do
w

Area loss
with overlap

Area loss
without overlap

Figure A.2: Dynamics of the congestion window.

Figure A.2 depicts an example of the changes in congestion window size. The

area under the curve indicates the total amount of data which has been sent by the

flow. We can see that by each packet loss some portion of this area is lost, and the

amount of loss is maximized when the overlap between the lost regions is minimum.

We omit a formal proof. We are also ignoring slow-start in this system; it is not

hard to see that considering slow-start can only lead to better bounds (i.e. smaller

buffers)—again, we omit the formal proof.

Let us consider a long time interval of length ∆, and let us denote the number

of packets injected by the sources in the virtual system during this interval with Pv,

and the number of packet drops in the virtual system during this time interval with

DV . Choose an arbitrarily small ε > 0. As ∆ goes to ∞, we have:

Pr

[
Pv >

∆NWmax

RTT
(1 + ε)

]
= o(1); (A.2)

and,

Pr

[
Pv <

∆NWmax

RTT
(1− ε)

]
= o(1). (A.3)

Since the probability of each packet being dropped is less than ρB, using Equa-

tion A.2, we can bound the total number of packet drops D as follows.

APPENDIX A. PROOF OF THE TINY BUFFERS MAIN THEOREM 92

Pr

[
DV >

ρB∆NWmax

RTT
(1 + ε)

]
= o(1). (A.4)

Based on Lemma 5 the number of packet drops in the virtual system is no less

than the number of packet drops in the real system (henceforth denoted by DR).

Therefore, we get the following.

Pr

[
DR >

ρB∆NWmax

RTT
(1 + ε)

]
= o(1). (A.5)

Now, if none of the flows in the real system encountered any losses during the

time interval ∆, the amount of data that could have been sent during this time, UT ,

can be bounded below as follows.

Pr

[
UT <

∆NWmax

RTT
(1− ε)

]
= o(1). (A.6)

We will lose some throughput as a result of packet drops in the system. As

we can see in Figure A.2, the maximum amount of loss occurs when the triangles

corresponding to packet losses have the minimum overlap. Therefore, we have

UL ≤
DRW 2

max

2
. (A.7)

In Equation A.5 we have bounded the number of packet losses in the real system

with a high probability. Combining this bound, with Equation A.7 we get

Pr

[
UL >

ρB∆NW 3
max

2RTT
(1 + ε)

]
= o(1). (A.8)

Now, if we want to guarantee an effective utilization throughput of θ, the following

equation must hold.

UT − UL

ρC∆
>= θ. (A.9)

Since ρC = NWmax/RTT, we need to satisfy

UL ≤ N∆Wmax(1− θ − ε)/RTT. (A.10)

APPENDIX A. PROOF OF THE TINY BUFFERS MAIN THEOREM 93

Combining Equations A.6, A.8, and A.10 if we want to have a throughput of θ,

we merely need to ensure

(1 + ε)ρB∆NW 3
max

2RTT
<

∆NWmax(1− θ − ε)

RTT
, (A.11)

which, in turn, is satisfied if the following holds:

ρB <
2(1− θ −O(ε))

W 2
max

. (A.12)

Since ε is arbitrarily small, it is sufficient for the buffer size B to satisfy

B ≥ log1/ρ

(
W 2

max

2(1− θ)

)
, (A.13)

which is O(log Wmax) since we assumed that ρ, θ are constants less than 1.

Appendix B

Pacing Analysis

In this Appendix we prove Theorem 2. We will consider the following discrete-time

model of the packet arrivals at the bottleneck link during one RTT. There are a total

M = C ·RTT time slots, where C is the bandwidth of the bottleneck link. We assume

that N flows will each send at most Wmax packets, and that there are at least S time

slots between consecutive packet arrivals of a single flow. The parameter S can be

interpreted as a lower bound on the ratio of the bottleneck link speed to the access

link speed. Note S is the crucial parameter in this section: when S is small traffic can

be arbitrarily bursty and we cannot expect good throughput with small buffers (see

also Section 3.6). We thus aim to prove that small buffers permit large throughput

provided S is sufficiently large. Finally, we assume that the average traffic intensity

ρ = NWmax/M is bounded below 1.

For the rest of this section, we adopt three assumptions.

(1) Buffers are sufficiently large: B ≥ cB log Wmax, where cB > 0 is a sufficiently

large positive constant.

(2) The distance between consecutive packet arrivals of a single flow is sufficiently

large: S ≥ cS log Wmax, where cS > 0 is a sufficiently large positive constant.

(3) Random jitter prevents a priori synchronization of the flows: flow start times

are picked independently and uniformly at random from the M time slots.

94

APPENDIX B. PACING ANALYSIS 95

As discussed in Section 3.4, the first two assumptions are often reasonable and are

mathematically necessary for our results. The validity of the third assumption is less

clear, especially in the presence of packet drops, which could increase the degree of

synchronization among flows. Our simulations in Section 3.5 indicate, however, that

our analytical bounds remain valid for long-lived flows that experience packet drops.

Our proof of Theorem 2 will focus on a particular (but arbitrary) packet. If the

packet arrives during time slot t, then the probability that it is dropped is at most

the probability that for some interval I of l contiguous time slots ending in time slot

t, there were at least l + B other packet arrivals. If this event occurs, we will say

that the interval I is overpopulated. We will bound the probability of overpopulation,

as a function of the interval length l, via the following sequence of lemmas. We first

state the lemmas, then show how they imply Theorem 2, and finally prove each of

the lemmas in turn.

The first lemma upper bounds the overpopulation probability for small intervals

(of length at most log Wmax).

Lemma 7. In the notation above, if l ≤ log Wmax, then the probability that the interval

I is overpopulated is at most e−cB, where c > 0 is a positive constant that depends only

on cB.

The second lemma considers intervals of intermediate size.

Lemma 8. In the notation above, if log Wmax ≤ l ≤ SWmax, then the probability that

the interval I is overpopulated is at most e−cS, where c > 0 is a positive constant that

depends only on cS.

Finally, we upper bound the probability of overpopulation in large intervals.

Lemma 9. In the notation above, if l ≥ SWmax, then the probability that the interval

I is overpopulated is at most e−cl/Wmax , where c > 0 is a positive constant that depends

only on cS.

We now show how Lemmas 7–9 imply Theorem 2.

APPENDIX B. PACING ANALYSIS 96

Proof of Theorem 2: We consider an arbitrary packet arriving in time slot t, and

take the Union Bound over the overpopulation probabilities of all intervals that con-

clude with time slot t. First, by Lemma 7, the total overpopulation probability for

small intervals (length l at most log Wmax) is O(e−B log Wmax), which is O(1/W 2
max)

provided cB (in Assumption (1)) is sufficiently large. Next, Lemma 8 implies that

the total overpopulation probability of intervals with length l in [log Wmax, SWmax]

is at most SWmaxe
−Ω(S), which is O(1/W 2

max) provided cS (in Assumption (2)) is suf-

ficiently large. Finally, Lemma 9 implies that the total overpopulation probability

of large intervals (l ≥ SWmax) is at most
∫ ∞

SWmax
e−Ω(x/Wmax)dx. Changing variables

(z = x/Wmax), this quantity equals Wmax

∫ ∞
S

e−zdz, which is O(1/W 2
max) provided cS

is sufficiently large. Taking the Union Bound over the three types of intervals, we

obtain an upper bound of O(1/W 2
max) for the total overpopulation probability, and

hence for the probability that the packet is dropped. This completes the proof.

Proof of Lemma 7: If the length l of interval I is at most log Wmax, then each flow

contributes at most 1 packet to I (assuming that cS ≥ 1). This occurs with probability

at most Wmaxl/M . Let Xi denote the corresponding indicator random variable for

flow i, and define X =
∑

Xi. Note that EX ≤ ρl ≤ ρ log Wmax. We use the following

Chernoff bound (see e.g. [38]) for a sum of indicator random variables with expectation

µ: Pr[X ≥ (1 + δ)µ] < [eδ/(1 + δ)(1+δ)]µ. Assuming that cB is sufficiently large (in

Assumption (1)), setting (1 + δ)µ = B gives Pr[X ≥ l + B] ≤ Pr[X ≥ B] ≤ e−Θ(B).

Proof of Lemma 8: Suppose (k − 1)S ≤ l ≤ kS for some k ∈ {1, 2, ...,Wmax}. Then,

each flow contributes at most k packets to I. Assume for simplicity that each flow

contributes either 0 or k packets to I, with the latter event occurring with probability

WmaxS/M (so that E[kX] ≈ ρl). (Here Xi is the indicator for the latter event, so

the total number of arrivals in I is at most kX, where X =
∑

i Xi.) A more accurate

analysis that permits each flow to contribute any number of packets between 0 and

k to I (with appropriate probabilities) can also be made, but the results are nearly

identical to those given here.

We use the same Chernoff bound as in the proof of Lemma 7. We are interested

in the probability Pr[X ≥ (l + B)/k], which we will upper bound by Pr[X ≥ l/k].

Since µ = Θ(ρl/k), the Chernoff bound gives Pr[X ≥ l/k] ≤ exp{−Θ(l/k)} = e−Θ(S)

APPENDIX B. PACING ANALYSIS 97

for fixed ρ < 1.

Proof of Lemma 9: The proof is similar to the previous one. Suppose that l ≥ WmaxS

and assume that each flow i contributes either 0 or Wmax packets to I, the latter event

occurring with probability l/M . (So E[WmaxX] = ρl.) The same Chernoff bound

argument as in the proof of Lemma 8 gives Pr[WmaxX >= l + B] ≤ e−Θ(l/Wmax) for

fixed ρ < 1.

Appendix C

All-optical Buffering

Assume that there is no packet in the system at time 0, and that at each time

slot 0 ≤ τ ≤ t at most one packet is scheduled to be switched into delay line Di,

i = 1, ..., log N . We prove that the same holds at time t + 1.

To prove this, we first show that if we assume that lemma 2 holds up to time t,

then for any two consecutive packets p and p′, with p′ immediately following p in the

departing order, the followings also hold for any τ ≤ t:

(†) p′ is either in the same line that contains p or is in a longer line, and

(‡)
l′(τ)− l(τ) = 1 mod d(τ) (C.1)

where l(τ) and l′(τ) are the locations of packets p and p′ respectively, and d(τ)

is the length of the delay line containing packet p.

The assumption that Lemma 2 is valid until time t ensures that scheduling one

packet has no effect on other packets, i.e., when a packet is to be transferred to

the tail of a delay line, that location is guaranteed to be empty. Hence, there is no

packet drop caused by the scheduling of head of line packets. A packet changes line

only when its priority gets smaller than the length of the current line. Therefore,

a particular packet only moves upward, from longer delay lines to shorter ones, and

98

APPENDIX C. ALL-OPTICAL BUFFERING 99

hence,

l(τ)− l(τ + 1) = 1 mod d(τ + 1)

l′(τ)− l′(τ + 1) = 1 mod d′(τ + 1). (C.2)

Now assume that † and ‡ are valid for some τ < t. If at time τ packet p′ is not

at the head of some delay line, then clearly † holds at τ + 1 too. If at time τ packet

p′ is at the head of a delay line, then ‡ implies that at τ packet p is located at the

tail of some delay line, or equivalently, at τ − 1 packet p has been at the head of a

delay line. But there can be at most one departure from the system at time τ − 1.

As a result, priority of packet p′ at time τ will be greater than or equal to that of

packet p at time τ − 1. Therefore, at time τ + 1 packet p will be located either in

the same line where p is, or in a longer line, and hence, † holds at time τ + 1 too. To

show that ‡ also holds at τ + 1, we need to keep in mind that the length of a delay

line is divisible by the length of any shorter delay line. More specifically, d′(τ + 1) is

a multiple of d(τ + 1) in Equation 2, and therefore, l′(τ + 1)− l(τ + 1) = l′(τ)− l(τ)

mod d(τ +1). Validity of ‡ at time τ +1 immediately follows from this equation, and

the fact that d(τ + 1) is a multiple of d(τ).

To show that lemma 2 holds at time t + 1, consider two head of line packets a

and b at time t, located at the head of two delay lines with length da and db, where

da < db. Since † holds at time t, we know that packet a has a smaller priority than

packet b. Also ‡ implies that the difference between the priorities is at least da. Note

that if packet a is scheduled to be in a line with length d0 at next time slot, then

its priority is greater than or equal to d0 ≤ da. Therefore, the priority of packet b is

greater than or equal to d0 + da ≥ 2d0, and hence packet b will not compete for the

same delay line.

Bibliography

[1] Cisco GSR routers. http://atantica.com/product/cisco/routers/12000.html.

[2] IP Monitoring Project. http://ipmon.sprint.com/.

[3] NetFPGA. http://yuba.stanford.edu/NetFPGA/.

[4] The network simulator – ns2. http://www.isi.edu/nsnam/ns/.

[5] A. Aggarwal, S. Savage, and T. Anderson. Understanding the performance of

TCP pacing. In Proceedings of the IEEE INFOCOM, pages 1157–1165, Tel-Aviv,

Israel, March 2000.

[6] G. Appenzeller. Sizing Router Buffers. PhD thesis, Stanford University, Depart-

ment of Computer Science, March 2005.

[7] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router buffers. In Proceed-

ings of the ACM SIGCOMM, pages 281–292, September 2004.

[8] N. Beheshti and Y. Ganjali. Packet scheduling in optical FIFO buffers. Technical

Report TR06-HPNG-09-09-00, Stanford University, 2006.

[9] N. Beheshti, Y. Ganjali, R. Rajaduray, D. Blumenthal, and N. ck McKeown.

Buffer sizing in all-optical packet switches. In Proceedings of OFC/NFOEC,

Anaheim, CA, USA, March 2006.

[10] D. P. Bertsekas and R. Gallager. Data Networks. Prentice Hall, second edition,

1992.

100

BIBLIOGRAPHY 101

[11] R. Bush and D. Meyer. RFC 3439: Some Internet architectural guidelines and

philosophy, December 2002.

[12] J. Cao, W. Cleveland, D. Lin, and D. Sun. Internet traffic tends to Poisson and

independent as the load increases. Technical report, Bell Labs, 2001.

[13] C. S. Chang, Y. T. Chen, and D. S. Lee. Construction of optical FIFO queues.

IEEE Transactions on Information Theory, 52(6):2838–2843, June 2006.

[14] C. S. Chang, D. S. Lee, and C. K. Tu. Recursive construction of FIFO opti-

cal multiplexers with switches delay lines. IEEE Transactions on Information

Theory, 50(12):3221–3233, December 2004.

[15] S. T. Chuang, A. G. N. McKeown, and B. Prabhakar. Matching output queue-

ing with a combined input output queued switch. In Proceedings of the IEEE

INFOCOM, pages 1169–1178, New York, NY, USA, March 1999.

[16] R. L. Cruz and J. T. Tasai. COD: alternative architectures for high speed packet

switching. IEEE/ACM Transactions on Networking, 4(1):11–20, February 1996.

[17] A. Dhamdhere and C. Dovrolis. Open issues in router buffer sizing.

ACM/SIGCOMM Computer Communication Review, 36(1):87–92, January

2006.

[18] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden. Part III:

Routers with very small buffers. ACM/SIGCOMM Computer Communication

Review, 35(3):83–90, July 2005.

[19] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden. Routers

with very small buffers. In Proceedings of the IEEE INFOCOM, Barcelona,

Spain, April 2006.

[20] A. Erramilli, O. Narayan, A. Neidhardt, and I. Saniee. Performance impacts of

multi-scaling in wide area TCP/IP traffic,. In Proceedings of the IEEE Infocom,

Tel-Aviv, Israel, March 2000.

BIBLIOGRAPHY 102

[21] A. Feldmann, A. Gilbert, P. Huang, and W. Willinger. Dynamics of IP traffic:

A study of the role of variability and the impact of control. In Proceedings of the

ACM SIGCOMM, Cambridge, MA, USA, August 1999.

[22] S. Floyd and V. Jacobson. Random early detection gateways for congestion

avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413, July 1993.

[23] C. Fraleigh, F. Tobagi, and C. Diot. Provisioning IP backbone networks to

support latency sensitive traffic. In Proceedings of the IEEE INFOCOM, San

Francisco, CA, USA, April 2003.

[24] C. J. Fraleigh. Provisioning Internet Backbone Networks to Support Latency

Sensitive Applications. PhD thesis, Stanford University, Department of Electrical

Engineering, June 2002.

[25] Y. Ganjali and N. McKeown. Experimental study of router buffer sizing. Tech-

nical Report TR06-HPNG-07-30-00, Stanford University, July 2006.

[26] A. Gilbert, Y. Joo, and N. McKeown. Congestion control and periodic behavior.

In Proceedings of LANMAN Workshop, Boulder, CO, USA, March 2001.

[27] D. K. Hunter, M. C. Chia, and I. Andonovic. Buffering in optical packet switches.

Journal of Lightwave Technology, 16(12):2081–2094, December 1998.

[28] G. Iannaccone, M. May, and C. Diot. Aggregate traffic performance with active

queue management and drop from tail. ACM/SIGCOMM Computer Communi-

cation Review, 31(3):4–13, March 2001.

[29] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot. An approach to alleviate link

overload as observed on an IP backbone. In Proceedings of the IEEE INFOCOM,

San Francisco, CA, USA, March 2003.

[30] V. Jacobson. [e2e] Re: Latest TCP measurements thoughts. Posting to the

end-to-end mailing list, March 7, 1988.

BIBLIOGRAPHY 103

[31] V. Jacobson. Congestion avoidance and control. ACM Computer Communica-

tions Review, 18(4):314–329, August 1988.

[32] F. P. Kelly. Reversibility and Stochastic Networks. Wiley, Chichester, 1979.

[33] V. Lal, J. A. Summers, M. L. Masanovic, L. A. Coldren, and D. J. Blumenthal.

Novel compact InP-based monolithic widely-tunable differential Mach-Zehnder

interferometer wavelength converter for 40Gbps operation. In Indium Phosphide

and Related Materials, Scotland, 2005.

[34] M. L. Masanovic, V. Lal, J. S. Barton, E. J. Skogen, J. A. Summers, L. Rau,

L. A. Coldren, and D. J. Blumenthal. Widely-tunable monolithically-integrated

all-optical wavelength converters in InP. Journal of Lightwave Technology, 23(3),

March 2005.

[35] Microsoft. TCP/IP and NBT configuration parameters for Windows XP. Mi-

crosoft Knowledge Base Article - 314053, November 4, 2003.

[36] R. Morris. TCP behavior with many flows. In Proceedings of the IEEE Interna-

tional Conference on Network Protocols, Atlanta, GA, USA, October 1997.

[37] R. Morris. Scalable TCP congestion control. In Proceedings of the IEEE INFO-

COM, Tel Aviv, Israel, March 2000.

[38] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.

[39] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput:

a simple model and its empirical validation. In Proceedings of the ACM SIG-

COMM, pages 303–314, Vancouver, BC, Canada, September 1998.

[40] H. Park, E. F. Burmeister, S. Bjorlin, and J. E. Bowers. 40-Gb/s optical buffer

design and simulations. In Numerical Simulation of Optoelectronic Devices (NU-

SOD), Santa Barbara, CA, USA, 2004.

BIBLIOGRAPHY 104

[41] G. Raina, D. Towsley, and D. Wischik. Part II: Control theory for buffer sizing.

ACM/SIGCOMM Computer Communication Review, 35(3):79–82, July 2005.

[42] G. Raina and D. Wischik. Buffer sizes for large multiplexers: TCP queueing

theory and instability analysis. In EuroNGI, Rome, Italy, April 2005.

[43] R. Rajaduray. Unbuffered and Limited-Buffer All-Optical Networks. PhD thesis,

University of California, Santa Barbara, Department of Electrical and Computer

Engineering, August 2005.

[44] K. Ramanan and J. Cao. A poisson limit for buffer overflow probabilities. In

Proceedings of the IEEE INFOCOM, New York, NY, USA.

[45] V. Ribeiro, R. Riedi, M. Crouse, and R. Baraniuk. Multiscale queuing analysis

of long-range dependent network traffic. In Proceedings of the IEEE Infocom,

Tel-Aviv, Israel, March 2000.

[46] A. D. Sarwate and V. Anantharam. Exact emulation of a priority queue with a

switch and delay lines. Queueing Systems: Theory and Applications, 53(3):115–

125, July 2006.

[47] W. R. Stevens. TCP/IP Illustrated, Volume 1 - The Protocols. Addison Wesley,

1994.

[48] C. Villamizar and C. Song. High performance TCP in ANSNET. ACM Computer

Communications Review, 24(5):45–60, October 1994.

[49] V. Visweswaraiah and J. Heidemann. Rate based pacing for TCP.

http://www.isi.edu/lsam/publications/rate based pacing/, 1997.

[50] L. Zhang and D. D. Clark. Oscillating behaviour of network traffic: A case study

simulation. Internetworking: Research and Experience, 1(2):101–112, 1990.

